Browse > Article

Visible Foliar Injuries and Growth Responses of Four Betula sp. Exposed to Ozone  

이재천 (임업연구원 임목육종부)
한심희 (임업연구원 임목육종부)
김장수 (임업연구원 임목육종부)
장석성 (임업연구원 임목육종부)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.4, no.1, 2002 , pp. 29-37 More about this Journal
Abstract
This study was conducted to compare ozone sensitivity among Betula sp. by measuring visible foliar injuries and growth responses. Four Betula sp.(B. costata, B. davurica, B. platyphylla var.japonica and B. ermani) grown in the greenhouse, were transplanted in the plastic pots. One-year-old seedlings of four Betula sp. exposed to relatively high ozone concentration(100 ppb) for 8 h day$^{-1}$ for 5 weeks in fumigation chamber. We measured visible injuries, leaf numbers and leaf areas at the end of experiments, and growth effects were evaluated by measuring the relative growth rate(RGR) of height and diameter and the dry weights of leaf, stem and root once a week. Four Betula species showed the significant differences for growth responses by the ozone treatment. Growths of three species, except for B. ermani, were significantly reduced by the $O_3$ exposure. B. costata with leaf senescence at the early growing stage and B. davurica indicated highest visible foliar injury rate may be the sensitive species at the 100 ppb ozone concentration. Although the growth rate of B. ermani was reduced by 100 ppb ozone exposure at the early growing stage, B. ermani may be a tolerance species that recover the growth rate with the adaptation for the high ozone concentration.
Keywords
Betula ermani; ozone exposure; visible injury; relative growth rate(RGR); growth responses;
Citations & Related Records
연도 인용수 순위
  • Reference
1 우수영, 1998: 오존 환경이 잡종 포플러의 생장과 기공개폐에 미치는 영향. 한국임학회지, 87(1), 50-56.
2 이재천, 김인식, 여진기, 구영본, 2001: 잎의 가시적 피해에 따른 오존에 대한 미류나무(Populus deltoides) 클론간 감수성 비교. 한국임학회지, 90, 10-18.
3 Adams, M.B., J.M. Kelly, and N.T. Edwards, 1988: Growth of Pinus taeda L. seedlings varies with family and ozone exposure level. Water, Air and Soil Pollution, 38, 137-150.
4 Chappelka, A.H. and B.I. Chevone, 1992: Tree responses to ozone. Surface Level Ozone Exposures and Their Effects on Vegetation, A.S. Lefohn. (Eds.), Chelsea, Lewis Publishers, Inc., 271-323.
5 Davis, D.D. and J.M. Skelly, 1992: Foliar sensitivity of eight eastern hardwood tree species to ozone. Water, Air and Soil Pollution, 62, 269-277.
6 Gunthardt-Goerg, M.S., 1996: Different responses to ozone of tobacco, poplar, birch and alder. Plant Physiology, 148, 207-214.
7 Mortensen, L. and O. Skre, 1990: Effects of low ozone concentrations on growth of Betula pubscens Ehrh., Betula verrucosa Ehrh. and Alnus incana (L.) Moench. New Phytologist, 115, 165-170.
8 Nash, B.L., M.C. Saunders, B.J. Miller, C.A. Bloom, D.D. Davis and J.M. Skelly, 1992: Foresthealth, an expert system for assessing foliar and crown health of selected northern hardwoods. Canadian Journal of Forest Research, 22, 1770-1775.
9 Oksanen, E., G. Amores, H. Kokko, J.M. Santamaria and L. Karenlampi, 2001: Genotypic variation in growth and physiological responses of Finish hybrid aspen(Populus tremuloides${\times}$ P. tremula) to elevated tropospheric ozone concentration. Tree Physiology, 21, 1171-1181.
10 Pearson, M., 1995: Effects of ozone on growth and gas exchange of Eucalyptus globulus seedlings. Tree Physiology, 15, 207-210.
11 Wang, D., D.F. Karnosky, and F.H. Bormann, 1986. Effects of ambient ozone on the productivity of Populus tremuloides Michx. grown under field conditions. Canadian Journal of Forest Research, 16, 47-55.
12 Lee, J.C., J.M. Skelly, K.C. Steiner, J.W. Zhang, and J.E. Savage, 1999: Foliar response of black cherry(Prunus serotina) clones to ambient ozone exposure in central Pennsylvania. Environmental Pollution, 105, 325-331.
13 Paakkonen, E., T. Holopainen and L. Karenlampi, 1995: Ageing-related anatomical and ultrastructural changes in leaves of birch(Betula pendula Roth) clones as affected by low ozone exposure. Annals of Botany, 75, 285-294.
14 Paakkonen, E., S. Paasisalo, T. Holopainen and L. Karenlampi, 1993: Growth and stomatal responses of birch(Betula pendula Roth.) clones to ozone in open-air and chamber fumigations. New Phytologist, 125, 615-623.
15 Skarby, L., H. Ro-Poulsen, F. Wellburn and L. Sheppard, 1998: Impact of ozone on forests: a European perspective. New Phytologist, 139, 109-122.
16 Samuelson, L.J., J.M. Kelly, P.A. Mays and G.S. Edwards, 1996: Growth and nutrition of Quercus rubra L. seedlings and mature trees after three seasonss of ozone exposure. Environmental Pollution, 91, 317-323.
17 Paakkonen, E., J. Vahala, T. Holopainen, R. Karjalainen and L. Karenlampi, 1996: Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch(Betula pendula) saplings exposed to low concentrations of ozone. Tree Physiology, 16, 597-605.
18 Coleman, M.D., J.G. Isebrands, R.E. Dickson and D.F. Kamosky, 1995: Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology, 15, 585-592.
19 Gunthardt-Goerg, M.S., P. Schmutz, R. Matyssek and J.B. Bucher, 1996: Leaf and stem structure of poplar (Populus${\times}$ euramericana) as influenced by $O_3, NO_2$, their combination, and different soil N supplies. Canadian Journal of Forest Research, 26, 649-657.
20 Horsfall, J.G. and R.W. Barratt, 1945: An improved grading system for measuring plant disease. Phytopathology, 35, 655.
21 Pye, J.M., 1988: Impact of ozone on the growth and yield of trees: a review. Journal of Environmental Quality, 17, 347-360.
22 Bortier, K., K. Vandermeiren, L. De Temmerman, and R. Ceulemans, 2001: Growth, photosynthesis and ozone uptake of young beech(Fagus sylvatica L.) in response to different ozone exposures. Trees, 15, 75-82.
23 Darrall, N.M., 1989: The effect of air pollutants on physiological processes in plants. Plant Cell Environment, 12, 1-30.
24 Tjoelker, M.G. and R.J. Luxmoore, 1991: Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda l. and Liriodendron tulipfera L. seedlings. New Phytologist, 119, 69-81.
25 Coleman, M.D., R.E. Dickson, J.G. Isebrands and D.F. Karnosky, 1996: Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiology, 16, 145-152.
26 김현석, 이경준, 1995: Open-top chamber 내에서 오존에 폭로시킨 1년생 느티나무(Zelkova serrata Makino) 묘목의 생리적 반응에 관하여. 한국임학회지, 84(4), 424-431.
27 Minnocci, A., A. Panicucci, L. Sebastiani, G. Lorenzini and C. Vitagliano, 1999: Physiological and morphological responses of olive plants to ozone exposure during a growing season. Tree Physiology, 19, 391-397.
28 우수영, 1997: 오존 환경에 대한 잡종 포플러 묘목의 가스교환과 생장에 관한 연구. 한국생태학회지, 20(4), 239-244.
29 Oksanen, E. and M. Rousi, 2001: Differences of Betula origins in ozone sensitivity based on open-field experiment over two growing seasons, Canadian Journal of Forest Research, 31, 804-811.