• Title/Summary/Keyword: oyster extracts

Search Result 44, Processing Time 0.022 seconds

Flavor Improvement of a Complex Extract from Poor-quality, Individually Quick-frozen Oysters Crassostrea gigas (IQF 굴(Crassostrea gigas) 복합엑스분의 추출 및 풍미개선)

  • Hwang, Seok-Min;Hwang, Young-Suk;Nam, Hyeon-Gyu;Lee, Jae-Dong;Ryu, Seong-Gwi;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.733-739
    • /
    • 2014
  • To develop an effective use for poor-quality individually quick-frozen (IQF) oysters Crassostrea gigas stored for a long period, the extract conditions, quality characteristics, and optimum reaction flavoring (RF) conditions of a complex extract from these IQF oysters were investigated. The moisture, pH, and volatile basic nitrogen contents of IQF oysters stored for 18 months (18M-IQFO) were 77.9%, 6.32, and 17.9 mg/100 g, respectively. Three different kinds of extract were prepared from 18M-IQFO: a hot-water extract (HE), scrap enzymatic hydrolysate (EH), and complex extract (CE). The respective extracts contained 5.5, 8.6, and 6.6% crude protein and 281.7, 366.0, and 343.0 mg/100 g amino nitrogen, and had 811, 359, and 1,170 mL/kg extraction yields. The CE was superior to the traditional HE in terms of the extraction yield, amino-nitrogen content, and organoleptic qualities, except for the odor. To improve flavor via the Maillard reaction, the reaction system used to produce a desirable flavor comprised CE (Brix $30^{\circ}$), 0.4 M glucose, 0.4 M glycine, and 0.4 M cysteine solution (4:2:1:1, v/v). The reaction time and pH were the independent variables, and the sensory scores for baked potato odor, masking shellfish odor, and boiled meat odor were the dependent variables. The surface response methodology (RSM) analysis of the multiple responses optimization gave a reaction time of 120.6 minutes and pH 7.33 at $120^{\circ}C$. The reaction improved the flavor of CE considerably, as compared to that of the unreacted extract.

Effect of Plants Extracts on Lipid Peroxidation of Rat Brain Tissue Induced by Reactive Oxygen Species (활성산소에 의해 유도된 흰쥐 뇌조직의 지질산화에 대한 식물체 추출물의 효과)

  • Kim, Seok-Joong;Han, Dae-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.976-982
    • /
    • 2005
  • Abilities of various edible plants and natural antioxidants to protect brain against oxidative damages were evaluated using brain homogenate of perfused Sprague-Dawley rat. Oxidative damage, expressed as lipid peroxidation (LPO), indicating total quantity of malondialdehyde and 4-hydroxyalkenal, increased from 4.1 to 6.9nmol/mg protein by treatment of $2.5{\mu}M$ ferrous sulfate and 7.5mM hydrogen peroxide as source of reactive oxygen species (ROS) on brain homogenate for 10min at $37^{\circ}C$ Mallow(88%) in leafy vegetables, small potato (93%) in root vegetables, green red pepper (76%) in fruit vegetables, and avocado (96%) in fruits showed highest LPO inhibition capacities. Ability of mushrooms decreased in order of nameko, shiitake, pine mushroom, oyster mushroom, and new type pine mushroom. Among natural antioxidants tested, (+)catechin (91%), (-)epigallocatechin gallate (85%), (-)epicatechin gallate (83%), and kaempferol(83%) showed high LPO inhibition capacities.

Studies on the Mechanism of Pigmentation during Storage of Canned Boiled Oysters I. Isolation and Spectroscopic Characterization of Pigments Isolated from Brown Oysters (보일드 굴 통조림의 저장에 따르는 변색원인에 관한 연구 제1보.굴의 갈변 원인 색소의 분리 및 그 분광학적 성질)

  • Lee, T.Y.;Chang, Y.K.;Choi, C.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.209-213
    • /
    • 1974
  • Pigments were extracted by aqueous acetone from the boiled canned oyster colored during storage and then the components were separated by thin layer chromatography. Totally eleven pigments could be isolated including one yellow, one red, five orange or reddish orange and four green components, and their UV-visible spectra were measured. It can be envisioned from the electronic spectral study and color reaction on the indivisual pigments isolated from the brown acetone extracts that the green pigments as well as most of the yellow orange ones may be porphyrin derivatives originated probably from the chlorophyll and some of the orange pigments contains ketocarotenoids. In particular, the pigment of band 8 which is expected to be pheophytin a or its derivatives and the carotenoid band 7 seem to be the major pigment. The close resemblance of the chromatogram of the colored muscle extract to that of the viscera suggests that the brown coloring material is probably originated from the viscera pigments.

  • PDF

Food Components Characteristic of Oysters Produced in Korea (국내 산지별 굴의 성분 특성)

  • Choi, Jong-Duck;Hwang, Seok-Min;Kang, Jin-Young;Kim, Sang-Hyun;Kim, Jeong-Gyun;Oh, Kwang-Soo
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.105-115
    • /
    • 2012
  • The detailed proximate, fatty/amino acid, mineral composition, texture, color, chemical and taste compounds of six oysters (four kinds of cultured oysters and two kinds of wild oysters) in Korea were investigated. Length and weight of the shell removed cultured and wild oysters were 4.7~5.1 and 3.0~4.2 cm, and 5.9~9.1 and 2.6~5.5 g, respectively. The proximate compositions were not significantly different between cultured and wild oysters. Amino nitrogen and volatile basic nitrogen content of these ones were 232.8~258.2 and 160.5~213.9 mg/100 g, 9.5~12.0 and 7.8~9.5 mg/100 g, respectively. As a texture characteristic of muscle, shearing force were 95~114 and 105~132 g. Amounts of total amino acids of cultured and wild oysters were 9,004~10,198 and 8,165~8,942 mg/100 g, respectively. Major amino acids and inorganic ions were aspartic acid, glutamic acid, proline, alanine, leucine, phenylalanine, lysine, arginine and K, Na, Ca, Fe, S, P, Zn. Major fatty acids of these ones were 16:0, 18:0, 16:1n-9, 18:1n-9, 22:1n-9, 16:4n-3, 20:5n-3 and 22:6n-3, and there was little difference between the two groups. Amounts of free amino acids of cultured and wild oysters extracts were 1,444~1,620 and 1,017~1,277 mg/100 g, respectively, and major ones were taurine, glutamic acid, glycine, alanine, tryptophan, ornithine and lysine. There is a little difference in glycine, tryptophan, ornithine and arginine contents, but TMAO and TMA contents were low in amount, and were not significantly different between the two groups.