• Title/Summary/Keyword: oxygen-limited condition

Search Result 46, Processing Time 0.031 seconds

Effect of Ammonium Concentration on the Emission of $N_2O$ Under Oxygen-Limited Autotrophic Wastewater Nitrification

  • Kim, Dong-Jin;Kim, Yu-Ri
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.988-994
    • /
    • 2011
  • A significant amount of nitrous oxide ($N_2O$), which is one of the serious greenhouse gases, is emitted from nitrification and denitrification of wastewater. Batch wastewater nitrifications with enriched nitrifiers were carried out under oxygen-limited condition with synthetic (without organic carbon) and real wastewater (with organic carbon) in order to find out the effect of ammonium concentration on $N_2O$ emission. Cumulated $N_2O$-N emission reached 3.0, 5.7, 6.2, and 13.5 mg from 0.4 l of the synthetic wastewater with 50, 100, 200, and 500 mg/l ${NH_4}^+$-N, respectively, and 1.0 mg from the real wastewater with 125 mg/l ${NH_4}^+$-N. The results indicate that $N_2O$ emission increased with ammonium concentration and the load. The ammonium removal rate and nitrite concentration also increased $N_2O$ emission. Comparative analysis of $N_2O$ emission from synthetic and real wastewaters revealed that wastewater nitrification under oxygen-limited condition emitted more $N_2O$ than that of heterotrophic denitrification. Summarizing the results, it can be concluded that denitrification by autotrophic nitrifiers contributes significantly to the $N_2O$ emission from wastewater nitrification.

Performance of sequencing batch reactor under aeration-limited condition and characteristics of microbial community change (폭기 에너지 저감 연속회분식반응조 운전과 미생물 군집 변화 특성)

  • Hwang, Kuksun;Shin, Donghyeok;Jeong, Ingyo;Park, Sungje;Chang, Insoo;Kim, Jeongbae;Choi, Jeongdong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.215-224
    • /
    • 2019
  • Recent focus on wastewater treatment includes energy-saving and renewable energy generation for energy-independence of water infrastructures. Aeration and pumping in biological wastewater removal processes account for nearly 30-60% of the total electricity cost in real wastewater treatment plants. In this study, the performance and microbial characteristics were investigated in sequencing batch reactor under typical oxygen and oxygen limited condition. Under typical DO ($7.55{\pm}0.99mg/L$) and low DO ($0.23{\pm}0.08mg/L$) conditions, COD removal was stable over 91 % during SBR operation. Ammonia removal efficiency was reduced from 95.6 % to 89.2 % when DO concentration was dropped sharply. Phosphorus removal efficiency also reached 77% at oxygen-limited condition. The results indicated that removal efficiency both ammonia and phosphorus was influenced by DO condition. Microbial analysis revealed that Proteobacteria and Bacteroidetes at phylum level was dominant in typical DO and low DO conditions and DO concentration did not much affect phylum distribution. Population decrease of genera of nitrifying bacteria(Dokdonella) and Dechloromonas spp. affect removal efficiency of nitrogen and phosphorus at low DO condition.

Effect of pH and Iron/Manganese Ion on TiO2 Mediated Photocatalytic Inactivation of Index Microorganisms (LNAPL을 이용한 지중 산소전달 향상: (I) Abiotic Condition)

  • Ha, Jeong-Hyub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.307-311
    • /
    • 2004
  • The objective of this work is to evaluate the hypothesis that a good technique for supplying oxygen to the saturated zone in the presence of light nonaqueous phase liquid (LNAPL) pool contamination at the water table is to pass air through the unsaturated zone above the pool. This hypothesis was evaluated in experimental studies performed using a bench-scale, sand-tank reactor, Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. These experimental results confirmed the hypothesis that an LNAPL pool can serve as a high concentration oxygen source to the oxygen-limited area beneath the pool and, as a result, enhance the in situ biodegradation rate.

The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향)

  • 이진희;김성준;이재흥
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.76-81
    • /
    • 1991
  • - The effect of redox potential (ORP) on lysine production by a leucine auxotrophic regulatory mutant of Corynebacterium glutclmicum on molasses medium was investigated in a 2-1 jar fermentor at pH 6.9 and $32^{\circ}C$. At a dilution rate of D=O.l $h ^1$, a maximum yield of Yr,,s=0.24 was obtained in either carbon- or leucine-limited chemostat where the redox potential was between -60 mV and - 100 mV. This level of redox potential corresponded to moderate oxygen deficiency. Under a high oxygen deficient condition of the redox potential of - 130 rnV (oxygen-limited chemostat), all the kinetic parameters such as $Y_[p/s}, q_s\; and \; q_p$ were decreased significantly and significant amounts of byproducts including glycine, alanine and valine were accumulated in the culture, indicating that the control of redox potential is important in lysine fermentation. At the redox potential of - 40 mV, on the other hand, large quantities of arginine (up to 0.38g/l) and glutamic acid (up to 0.12 g/l) were produced. A maximum lysine productivity of 2.41 g/l/h was achieved at - 66 mV under a carbon-limited condition.

  • PDF

Effects of Nitrogen and Oxygen Supply on Production of $Poly-{\beta}-Hydroxybutyrate$ in Azotobacter chroococcum

  • Lee, In-Young;Stegantseva, Ellen-M.;Savenkova, Ludmila;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.100-104
    • /
    • 1995
  • Production of $poly-{\beta}-hydroxybutyrate$ (PHB) in a strain of Azotobacter chroococcum, a nitrogen-fixing bacteria, was investigated at various levels of nitrogen and oxygen. Feeding nitrogen source increased both cell growth and PHB accumulation. Oxygen supply appeared to be one of the most important operating parameters for PHB production. Both cell growth and PHB accumulation increased with the sufficient supply of air in the fed-batch fermentation of the strain. However, it was also noted that keeping the oxygen level under limited condition was critical to achieve high PHB productivity. A high titer of PHB (52 g/l) with a high cellular content (60%) was obtained after 48 hr of fed-batch operation by controlling the oxygen supply. Dual limitation of nitrogen and oxygen did not further increase the PHB accumulation probably due to the greater demand for reducing power and ATP for nitrogen fixation.

  • PDF

Thermal Behavior of the Nuclear Graphite Waste Generated from the Decommissioning of the Nuclear Research Reactor (연구로 해체시 발생되는 흑연폐기물의 열적 거동)

  • 양희철;은희철;이동규;조용준;강영애;이근우;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.105-114
    • /
    • 2004
  • This study investigated the thermal behavior of the nuclear graphite waste generated from the decommissioning of the Korean nuclear research reactor, The first part study investigated the decomposition rate of the nuclear graphite waste up to $1000^{\circ}C$ under various oxygen partial pressures using a thermo-gravimetric analyzer (TGA). Tested graphite waste sample not easily destroyed in the oxygen-deficient condition. However, the gas-solid oxidation reaction was found to be very effective in the presence of oxygen. No significant amount of the product of incomplete combustion was formed even in the limited oxygen concentration of 4% $O_2$. The influence of temperature and oxygen partial pressure was evaluated by the theoretical model analysis of the thermo-gravimetric data. The activation energy and the reaction order of graphite oxidation were evaluated as 128 kJ/mole and 1.1, respectively. The second part of this study investigated the behavior of radioactive elements under graphite oxidation atmosphere using thermodynamic equilibrium model. $^{22}Na$, $^{134}Cs$ and $^{137}Cs$ were found be the semi-volatile elements. Since volatile uranium species can be formulated at high temperatures above $1050^{\circ}C$, the temperature of incinerator furnace should be minimized. Other corrosion/activation products, fission products and uranium were found to be the non-volatile species.

  • PDF

Development of Cell Entrapment Technology for the Improvement of Bifidobacterium Viability (Bifidobacterium의 생존력 증대를 위한 세포포집기술개발)

  • Park, Hui-Gyeong;Bae, Gi-Seong;Heo, Tae-Ryeon
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.389-395
    • /
    • 1999
  • Bifidobcterium spp. can provide human being with several beneficial physiological. Therefor, there has been a considerable interest in products Bifidobcterium spp. dietary supplements or as starter cultures for probiotic products that may assint in the improvement of health on the human. But indusrial applications have been limited because Bifidobcterium spp. are sensitive to acidic pH due to organic acid produced by themselves and various conditions. The objective of this study was to establish new method for improvement of Bifidobcterium viability by entrapment im calcium alginate beads. We have a plan to select the most suitable polymer through the comparison with acid tolerance oxygen tolerance and theological properties of polymer. Increase of the viable number of Bifidobcterium induced increasing acid tolerance and oxygen tolernce trough the development of entrapment technique. The 4%, 3030mm diameter) sodium alginate beads led to the best survivability under acid condition. Especially, addition of 6% mannitol, 6% glycerol or 6% sorbitol to the sodium alginate helped a beneficial effect on viability against acid, bile salt, hydrogen peroxide and cold strage. The number of viability of entrapeede cells by retreatment was 96 fold higher than non-entrapeed cells after 5 hours of storage under pH 3 acidic condition. These experimental data clearly demonstrate that a whole cell immobilization by entrapment in calcium alginate beads is an important survival mechanism enable to withstand environmental stresses as the acidic condition, hydrogen peroxide toxicity and frozen state.

  • PDF

Studies of Cyclosporin A Biosynthesis under the Conditions of Limited Dissolved Oxygen or Carbon Source in Fed-batch Culture (용존산소 제한 또는 탄소원 제한 조건의 유가식배양에서의 Cyclosporin A 생합성 연구)

  • 전계택;박성관;권호균;정연호;정용섭;장용근;이영행
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • We investigated the effects of dissolved oxygen (D.O.) and fructose (C-source) on cell growth and biosynthesis of cyclosporin A (CyA) produced as a secondary metabolite by a wild-type filamentous fungus, Tolypocladium inflatum. This was performed by controlling the level of D.O. and the residual C-source, as required, through adjustment of medium flow rate, medium concentration and agitation rate in fed-batch cultures. CyA production was furned out to be maximal, when D.O. level was controlled around 10% saturated D.O. and concentration of the C-source was maintained sufficiently low (below 2 g/L) not to cause carbon catabolite repression. Under this culture condition, we obtained the highest values of CyA concentration (507.14 mg/L), Qp (2.11 mg CyA/L/hr), $Y_x/s$ (0.49 g DCW/g fructose), $Y_p/s$<(22.56 mg CyA/g fructose), and YTEX>$_p/x$ (48.31 mg CyA/g DCW), but relatively lower values of cell concentration (11.98 g DCW/L) and cell productivity (0.043 g DCW/L/hr), in comparison with other parallel fed-batch fermentation conditions. These results implied that, in the carbon-limited culture with 10% saturated D.O. level, the producer microorganism utilized the C-source more efficiently for secondary metabolism.

  • PDF

Chemical Characteristics and Eutrophication in Cheonsu Bay, West Coast of Korea (한국 서해 천수만의 화학적 수질특성과 부영양화)

  • Kim, Dong-Seon;Lim, Dhong-Il;Jeon, Soo-Kyung;Jung, Hoi-Soo
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.45-58
    • /
    • 2005
  • Temperature, salinity, dissolved oxygen, COD, dissolved inorganic nitrogen(DIN), dissolved inorganic phosphorus (DIP), and chlorophyll were measured in the surface and bottom waters of Cheonsu Bay in April, August, December 2003, and Hay 2004. DIN showed a large seasonal variation, with higher values in summer and lower in spring. The significant decrease in DIN concentration was observed from April to May, which may imply the occurrence of spring phytoplankton bloom sometime in these periods. In contrast, DIP did not show distinct seasonal variation, with relatively low values compared with other coastal regions. The low DIP concentration in Cheonsu Bay is ascribed to a limited phosphorus input around Cheonsu Bay. The Nf ratios of Cheonsu Bay much higher than the Redfield ratio(16) in all season indicate that phytoplankton growth is limited by phosphorus. Based on low chlorophyll concentrations and eutrophication index, Cheonsu Bay has not been in eutrophic condition during our observation periods. In the artificial lakes located around Cheonsu Bay, however, chlorophyll concentrations were very high, mostly over $10{\mu}g\;l^{-1}$, indicating that they are now in severe eutrophic condition.

RETF 액체산소 공급설비 및 엔진 수류시험

  • Han, Yeoung-Min;Cho, Nam-Kyung;Kim, Seung-Han;Chung, Yong-Ghap;Park, Sung-Jin;Lee, Kwang-Jin;Kim, Young-Han;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-131
    • /
    • 2002
  • In this paper, characteristics of cryogenic liquid oxygen was examined during cold flow of KSR-III main engine at each stage. The effect of venting was examined at the stage of cooling and at the pressurization stage, the interaction between nitrogen gas and liquid oxygen was also examined. The characteristic of liquid oxygen in the engine manifold was analyzed. The results showed that venting was the primary role at the cooling process and the interaction of nitrogen gas and liquid oxygen in the run tank is limited at the surface area. With the sampling rate of 1KHz static and dynamic pressure were measured in the rocket engine manifold and in the LOX supply equipment. 32.5mm and 38mm orifice were installed for the tests and pressure condition of liquid oxygen was 23Bar, 29Bar, 41Bar. Increase of orifice diameter and decrease of supply pressure reduced the perturbation of pressure in engine manifold.

  • PDF