DOI QR코드

DOI QR Code

Performance of sequencing batch reactor under aeration-limited condition and characteristics of microbial community change

폭기 에너지 저감 연속회분식반응조 운전과 미생물 군집 변화 특성

  • Hwang, Kuksun (Department of Environmental Engineering, Korea National University of Transportation) ;
  • Shin, Donghyeok (Department of Environmental Engineering, Korea National University of Transportation) ;
  • Jeong, Ingyo (Department of Environmental Engineering, Korea National University of Transportation) ;
  • Park, Sungje (Department of Environmental Engineering, Korea National University of Transportation) ;
  • Chang, Insoo (Department of Environmental Engineering, Korea National University of Transportation) ;
  • Kim, Jeongbae (Department of Environment, Keumyung University) ;
  • Choi, Jeongdong (Department of Environmental Engineering, Korea National University of Transportation)
  • 황국선 (국립한국교통대학교 환경공학과) ;
  • 신동혁 (국립한국교통대학교 환경공학과) ;
  • 정인교 (국립한국교통대학교 환경공학과) ;
  • 박성제 (국립한국교통대학교 환경공학과) ;
  • 장인수 (국립한국교통대학교 환경공학과) ;
  • 김정배 (계명대학교 환경학부 지구환경학) ;
  • 최정동 (국립한국교통대학교 환경공학과)
  • Received : 2019.05.02
  • Accepted : 2019.05.28
  • Published : 2019.06.15

Abstract

Recent focus on wastewater treatment includes energy-saving and renewable energy generation for energy-independence of water infrastructures. Aeration and pumping in biological wastewater removal processes account for nearly 30-60% of the total electricity cost in real wastewater treatment plants. In this study, the performance and microbial characteristics were investigated in sequencing batch reactor under typical oxygen and oxygen limited condition. Under typical DO ($7.55{\pm}0.99mg/L$) and low DO ($0.23{\pm}0.08mg/L$) conditions, COD removal was stable over 91 % during SBR operation. Ammonia removal efficiency was reduced from 95.6 % to 89.2 % when DO concentration was dropped sharply. Phosphorus removal efficiency also reached 77% at oxygen-limited condition. The results indicated that removal efficiency both ammonia and phosphorus was influenced by DO condition. Microbial analysis revealed that Proteobacteria and Bacteroidetes at phylum level was dominant in typical DO and low DO conditions and DO concentration did not much affect phylum distribution. Population decrease of genera of nitrifying bacteria(Dokdonella) and Dechloromonas spp. affect removal efficiency of nitrogen and phosphorus at low DO condition.

Keywords

References

  1. Appelbaum, B. (2002). Water and sustainability: U.S. Electricity consumption for water supply &treatment - the next half century, EPRI. Palo Alto. CA, 1006787, 3(1-14).
  2. Bertagnolli, A.D., Padilla, C.C., Glass, J.B., Thamdrup, B. and Stewart, F.J. (2017). Metabolic potential and in situ activity of marine Marinimicrobia bacteria in an anoxic water column, Environ. Microbiol., 19(11), 4392-4416. https://doi.org/10.1111/1462-2920.13879
  3. Chen, J., Yang, Y., Liu, Y., Tang, M., Wang, R., Zhang, C., Jie, J. and Jia, C. (2019). Bacterial community shift in response to a deep municipal tail wastewater treatment system, Bioresour. Technol., 281, 195-201. https://doi.org/10.1016/j.biortech.2019.02.099
  4. Chen, M., Wang, W., Feng, Y., Zhu, X., Zhou, H., Tan, Z. and Li, X. (2014). Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02, Bioresour. Technol., 167, 456-61. https://doi.org/10.1016/j.biortech.2014.06.001
  5. Daigger, G.T. and Littleton, H.X. (2014). Simultaneous biological nutrient removal: a state-of-the-art review, Water. Environ. Res., 86 (3), 245-257. https://doi.org/10.2175/106143013X13736496908555
  6. Freed, S., Robertson, S., Meyer, T. and Kyndt, J. (2019). Draft whole-genome sequence of the green sulfur photosynthetic bacterium chlorobaculum sp. strain 24CR, isolated from the carmel river, Microbiol. Resour. Announc., 8(12).
  7. Figueroa-Gonzalez, I., Quijano, G., Laguna, I., Munoz, R. and Garcia-Encina, P.A. (2016). A fundamental study on biological removal of $N_2O$ in the presence of oxygen, Chemosphere, 158, 9-16. https://doi.org/10.1016/j.chemosphere.2016.05.046
  8. Horn, M.A., Ihssen, J., Matthies, C., Schramm, A., Acker, G. and Drake, H.L. (2005). Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, $N_2O$-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa, Int. J. Syst. Evol. Microbiol., 95440.
  9. Hu, J.Y., Ong, S.L., Ng, W.J., Lu, F. and Fan, X.J. (2003). A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors, Water Res., 37(14), 3463-3471. https://doi.org/10.1016/S0043-1354(03)00205-7
  10. Ji, B., Chen, Wei., Zhu, Lei., and Yang, Kai. (2016). Isolation of aluminum-tolerant bacteria capable of nitrogen removal in activated sludge, Mar. Pollut. Bull., 106, 31-34. https://doi.org/10.1016/j.marpolbul.2016.03.051
  11. Jia, X., Bradle, W.S., Kevin, C., Bowen, Z., Jovanny, Z., Christoper, M.T., Tatiana, R., Charles, P.G., Ian, L.P., Samendra, P. and Sherchan. (2019). Assessing the spatial and temporal variability of bacterial communities in two Bardenpho wastewater treatment systems via Illumina MiSeq sequencing, Sci. Total. Environ., 657, 1543-1552. https://doi.org/10.1016/j.scitotenv.2018.12.141
  12. Jung, J.Y. and Choi, D.H. The Method of Removing Nitrogen in Wastewater (2016). https://patentimages.storage.googleapis.com/ca/31/ae/38e410a7ba4f45/KR101831900B1.pdf (February 19, 2018).
  13. Kang, H.Y., Kim, H.E., Joung, Y.C. and Hoh, K.S. (2017). Lewinella maritima sp. nov., and Lewinella lacunae sp. nov., novel bacteria from marine environments, Int. J. Syst. Evol. Microbiol., 67, 3603-3609. https://doi.org/10.1099/ijsem.0.002176
  14. Keene, A.N. Reusser, R.S. Scarborough, J.M. Grooms, L.A. Seib, M. Domingo, S.J. and Noguera, R.D. (2017). Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions, Water. Res., 121, 72-85. https://doi.org/10.1016/j.watres.2017.05.029
  15. Kim, Y.J., Lee, J.Y. and Kang, Y.T. (2010). Study on energy independence plan for sewage treatment plant, Korean J. Air-Cond. Refrig. Eng., 22, 49-55.
  16. Kong, Q., Zhang, J., Miao, M., Tian, L. and Liang, S. (2013). Partial nitrification and nitrous oxide emission in an intermittently aerated sequencing batch biofilm reactor, Chem. Eng. J., 217, 435-441. https://doi.org/10.1016/j.cej.2012.10.093
  17. KWWA (Korean Water and Wastewater Association). (2011). Stand. Sewer. facilities., 384.
  18. Lin, Z., Wang, Y., Huang, W., Wang, J., Chen, L., Zhou, J. and He, Q. (2019). Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery, Bioresour. Technol., 277, 27-36. https://doi.org/10.1016/j.biortech.2019.01.025
  19. Liu, G. and Wang, J. (2013). Long-term low DO enriches and shifts nitrifier community in activated sludge, Env. Sci. Technol., 47, 5109-5117. https://doi.org/10.1021/es304647y
  20. MOE(Ministry of Environment). (2016). Stat. sewer, 11-1480000-000159-10, 3.
  21. Nielsen, P.H., Kragelund, C., Seviour, R.J. and Nielsen, J.L. (2009). Identity and ecophysiology of filamentous bacteria in activated sludge, Microbiol. Rev., 33(6), 969-998.
  22. Oliveira, M.A.S., Aquino, B., Bonatto, A.C., Huergo, L.F. and Monteiro, R.A. (2012). Interaction of GlnK with the GAF domain of Herbaspirillum seropedicae NifA mediates NH4+-regulation, Biochimie., 94(4), 1041-1047. https://doi.org/10.1016/j.biochi.2012.01.007
  23. Park, H.D., Regan, J.M. and Noguera, D.R. (2002). Molecular analysis of ammoniaoxidizing bacterial populations in aerated-anoxic orbal processes, Water. Sci. Technol., 46 (1-2), 273-280. https://doi.org/10.2166/wst.2002.0489
  24. Rieger, L., Jones, R.M., Dold, P.L. and Bott, C.B. (2014). Ammonia-based feedforward and feedback aeration control in activated sludge processes, Water Environ. Res., 86 (1), 63-73. https://doi.org/10.2175/106143013X13596524516987
  25. Schott, J., Griffin, B.M., and Schink, B. (2010). Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17, Microbiol., 156, 2428-37. https://doi.org/10.1099/mic.0.036004-0
  26. Schmehl, M., Jahn, A., Vilsendorf, A.M., Hennecke, S., Masepohl, B., Schuppler, M., Marxer, M., Oelze, J. and Klipp, W. (1993). Identification of a new class of nitrogen fixation genes in Rhodobacter capsalatus: a putative membrane complex involved in electron transport to nitrogenase, Mol. Gen. Genet., 241, 602-615.
  27. Sun, F., Hu, J., Zhou, Y., Mei, R., Wang, C., He, Y. and Wu, W. (2018). High efficient alternating anaerobic/aerobic process for polyester resin wastewater treatment: Performance and microbial community structure, Biochem. Eng. J., 138, 121-130. https://doi.org/10.1016/j.bej.2018.07.005
  28. Sun, L., Wang, Z., Wei, X., Li, P., Zhang, H., Li, M., Li, B. and Wang, S. (2015). Enhanced biological nitrogen and phosphorus removal using sequencing batch membrane-aerated biofilm reactor, Chem. Eng. Sci., 135, 559-565. https://doi.org/10.1016/j.ces.2015.07.033
  29. Takeuchi, M., Kamagata, Y., Oshima, K., Hanada, S., Tamaki, H., Marumo, K., Maeda, H., Nedachi, M., Hattori, M., Iwasaki, W. and Sakata, S. (2014). Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum, Int. J. Syst. Evol. Microbiol., 64(9), 3240-6. https://doi.org/10.1099/ijs.0.063503-0
  30. Tchobanoglous, G., Burton, F.L. and Stense, I.H.D. (2003). Wastewater engineering: treatment and reuse, 4th Eds., McGraw Hill, New York.
  31. Tian, M., Zhao, F., Shen, X., Chu, K. and Liu, H. (2015). The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic ($A_2O$) nitrogen and phosphorus removal reactor using Illumina sequencing, J. Environ. Sci., 35, 181-190. https://doi.org/10.1016/j.jes.2014.12.027
  32. Vanparys, B., Heylen, K., Lebbe, L. and De.Vos, P. (2005). Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum, Int. J. Syst. Evol. Microbiol., 55, 1315-8. https://doi.org/10.1099/ijs.0.63635-0
  33. Vuyst, L.D. and Vandamme, E.J. (1993). Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp, lactis batch fermentations using a complex medium, Appl. Microbiol. Biotechnol., 40, 17-22. https://doi.org/10.1007/BF00170422
  34. Wang, P., Yu, Z., Qi, R. and Zhang, H. (2016). Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant, Water Res., 105, 157-166. https://doi.org/10.1016/j.watres.2016.08.050
  35. Wu, S., He, S., Zhou, W., Gu, J., Huang, J., Gao, L. and Zhang, X. (2017). Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland, Environ. Pollut., 231, 1122-33. https://doi.org/10.1016/j.envpol.2017.07.049
  36. Yang, N., Zhan, G., Li, D., He, X. and Wang, C. (2018). Performance and microbial community of a novel non-aeration-based up-flow bioelectrochemical filter (UBEF) treating real domestic wastewater, Chem. Eng. J., 348, 271-280. https://doi.org/10.1016/j.cej.2018.04.200
  37. Yoo, S.H., Weon, H.Y., Anandham, R., Kim, B.Y., Hong, S.B., Jeon, Y.A., Koo, B.S. and Kwon, S.W. (2009). Dokdonella soli sp. nov., a gammaproteobacterium isolated from soil, Int. J. Syst. Evol. Microbiol., 59(8), 1965-1968. https://doi.org/10.1099/ijs.0.005348-0
  38. Zheng, W. and Ni, J. (2018). Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applicaions in nitrogen oxides emission mitigation. Springer. Peking Univerisity, Beijing, China, 92.
  39. Zhang, Y., Islam, M.S., McPhedran, K.N., Dong, S., Rashed, E.M., El-Shafei, M.M., Noureldinf, A.M. and El-Din, M.G. (2017). A comparative study of microbial dynamics and phosphorus removal for a two side-stream wastewater treatment processes, R. Soc. Chem. Adv., 7, 45938-48.
  40. Zilles, J.L., Peccia, J., Kim, M.W., Hung, C.H. and Noguera, D.R. (2002). Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants, Appl. Environ. Microbiol., 2763-2769.