• Title/Summary/Keyword: oxygen water

Search Result 3,161, Processing Time 0.03 seconds

Effect of Salinity on Dissolved Oxygen Characteristics in an Ejector-Aerator (이젝터-폭기 시스템의 용존산소특성에 미치는 염도의 영향)

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.640-646
    • /
    • 2011
  • Dissolved oxygen (DO) refers to the volume of oxygen that is contained in water, and is a major indicator of water quality. The objective of this paper was to investigate the effect of salinity on the dissolved oxygen characteristics in an ejector-aerator. An experimental aeration system composed of a motor-pump, an ejector, a motor-blower, a set of aeration and recirculation tank and a control panel. The dissolved oxygen concentrations decreased with the water salinity. The volumetric mass transfer coefficient increased with increasing the water salinity.

Removal of Dissolved Oxygen from the Make-up Water of NPP Using Membrane-based Oxygen Removal System

  • Chung, Kun-Ho;Kang, Duck-Won;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.541-547
    • /
    • 1999
  • Corrosion control, in the end-shield cooling system of Wolsung Nuclear Power Plant, is directly related to the control of dissolved oxygen (DO). The current method, being used to deoxygenate the end-shield cooling water, is a chemical treatment by addition of reducing agent, hydrazine, to react with DO. This method has several limitations including high reaction temperature of hydrazine , unwanted explosive hydrogen gas production, and its intrinsic harmful property. A new approach to remove DO using a membrane-based oxygen removal system (MORS) was tried to overcome limitations of the hydrazine treatment. The DO removal efficiency of the MORS was found to be in the range 87% to 98%: The higher vacuum, the lower water flow rate and the higher water temperature tend to increase the DO removal efficiency.

  • PDF

The Characteristics of Oxygen Deficient Water Mass in Gamak Bay (가막만 빈산소 수괴의 특성)

  • Kim, Jeong-Bae;Lee, Sang-Yong;Yu, Jun;Choi, Yang-Ho;Jung, Chang-Su;Lee, Pil-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.216-224
    • /
    • 2006
  • To clarify the formation process and characteristics of oxygen deficient water mass in Gamak Bay, oxygen deficiency was weekly observed from 17 June to 12 September 2005. Surface water temperature was significantly lower in the outer bay than in the inner bay, whereas the bottom water temperature was higher in the central area of bay than in the outer and inner bay. The vertical stratification of water mass was strongly formed during the period, and thermocline was observed between 3 and 5m deep. The oxygen deficiency in the bottom layer began to appear at early July in the inner bay and gradually spread to the center area of the bay in early August. The mean transparency and light attenuation coefficient($K_d$) in water mass was 4.0m and 0.47, respectively. Average concentrations of nutrient and chlorophyll ${\alpha}$ in the bottom layer were significantly higher than those in surface, and those concentrations were significantly higher in the inner bay than in the outer bay. During the formation of oxygen deficiency in the bottom layer, oxygen penetration depth in the bottom sediment were extremely shallow, and oxygen consumption rate in the bottom sediment were lower than that in the area where oxygen deficient water mass disappeared. Dissolved oxygen concentrations in the bottom layer are negatively correlated with nutrient concentrations, whereas those in the surface layer did not show a significant relationship with nutrient concentrations. Elevated loss of oxygen in the bottom water mass was attributed to the increase of the oxygen consumption rates in sediments and the decomposition of organic matter by microorganism.

  • PDF

Cultivation of Sprout by Highly Concentrated Oxygen Water Soaking (고농도 산소수 침지를 통한 새싹 재배)

  • Cha, Jin-Myeong;Hong, Seung-Ho;Kim, Sun-Yil;Park, Ju-Young;Kim, Maeng-Su;Lee, In-Hwa
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.525-528
    • /
    • 2008
  • In order to compare the germination and growth rate of the sprouts soaked in highly concentrated oxygen water, it with specific amounts of oxygen dissolved was produced in a high pressure reactor by pressuring oxygen. The sprouts were observed after being soaked in $20^{\circ}C$ oxygen water with 20, 30, 40, 50 ppm of oxygen dissolved each. Results of ten days later indicate that the final germination rate of the sprout soaked in 50 ppm oxygen water was $24.6{\sim}28.6%$ higher than that of the sprout soaked in distilled water. The final growth length also measured 6-7 mm higher than the sprout soaked in distilled water, demonstrating that enough supply of oxygen to the sprout induces stability and efficiency in its growth.

Fabrication of Oxygen Sensitive Particles and Characteristic Analysis (산소감응성 입자 제조 및 특성 분석 연구)

  • Jeong, Won-Taek;Yi, Seung-Jae;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.41-46
    • /
    • 2011
  • Oxygen sensitive functional particles(OSParticle) were fabricated by three different methods for using the particles as oxygen sensors and PIV tracers. The used methods were a physical coating method, an ion-exchange method and a dispersion polymerization method. The physical coating method is dipping $SiO_2$ hollow particles into dye solution then drying. This method is very simple, but particles are not uniform in diameter and luminescence. The particles fabricated by the ion-exchange method have very uniform diameter and well doped. However, it can not be used in water since the particles are hydrophobic. In case of the dispersion polymerization method, the diameter of OSParticles is quite uniform. The diameter of OSParticles can be changed by controlling the quantity of AIBN (2,2'-azobis isobutyronitrile). For the purpose of dissolved oxygen concentration measurement in micro scale water flows, the dispersion polymerized OSParticles turn out to be the most superior functional particles. The luminescent intensity of OSParticles was tested with the variation of dissolved oxygen concentration in water samples. As a result, the luminescent intensity of OSParticles is monotonically decreased with increasing DO (Dissolved oxygen) concentration of water.

Effect of broccoli sprouts germination by soaking water condition (침지조건이 브로콜리 발아에 미치는 영향)

  • Park, Ju-Young;Yoo, Chang-Hoon;Lee, In-Hwa;Hong, Seung-Ho;Cha, Jin-Myeong
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.551-553
    • /
    • 2008
  • In order to optimization germination condition of broccoli, we carried out germination ratio experiment under soaking time, soaking temperature, oxygen concentration. The germination ratio results 98.5% following as soaking water having 10 ppm DO(demanded oxygen) during 4 hr at $20{\sim}30^{\circ}C$. The result of provide the dissolved oxygen water, when the concentration of oxygen water were 7, 12 ppm, germination ratio were observed about 76%, 92%. Also, we showed the growth rate of 2 times in 12 ppm compared with 7 ppm. Consequently, germination ratio of broccoli increased cultivation condition at soaking water having high concentration oxygen more than supply to oxygen water of high concentration.

A Study on the Optimal Use of Silent Discharge Type Ozonizer in Purification Plant (정수장의 무성방전형 오존발생기 최적활용방안에 관한 연구)

  • Shin, Hong-Sub;Park, Hyun-Mi;Kwon, Young-Hak;Song, Hyun-Gig;Park, Won-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.54-60
    • /
    • 2015
  • There are 5 purification plants with the adopted advanced water purification treatment process in Korea. Annual operating costs were 8,990 million won including purchase cost of oxygen and power usage charges. We need research to optimize, in the future, when considering the direction of domestic water treatment continues to adopt advanced water treatment process. In this paper, calculate the optimal operating costs by injected the oxygen gas, used power cost. approximately 25% of the operating costs can be reduced when injected the ozone gas is 1.0ppm than 2.0ppm, the necessary amount of oxygen is increased then power is lower. so operating costs are decided according to oxygen costs. On the other hand, high ozone concentration 2.0ppm, the necessary power is increased then amount of oxygen is lower. Therefore, in the case of G purification plant, the controlling factor of the input ozone concentration 2ppm, PID control operation by setting the concentration of over 10Wt% is efficient. The installed capacity is the more little the more better when considering on Ozone injection rate in the process of water treatment.

Annual Variation in Oxygen-deficient Water Mass in Jinhae Bay, Korea (진해만 빈산소수괴의 경년변동 특성)

  • Lee, In-Cheol;Oh, Yoo-Jihn;Kim, Heon-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.134-139
    • /
    • 2008
  • To improve the oxygen-deficient water mass (ODW), the spatial and temporal variation in the water quality and characteristic of ODW occurrence were analyzed using yearly water quality data from 1989 to 2006 in Jinhae Bay, Korea. In addition, we estimated $ODW_{area},\;ODW_{vol.}$ and $ODW_R$ for Jinhae Bay. The overall water quality improved during the 2000s, based the annual variation in dissolved oxygen, chemical oxygen demand, etc. A cluster analysis classified Jinhae Bay into the southwestern, central, northern, and eastern regions. ODW occurred throughout the southwestern region in 1993 and 2002-2004, and the estimated $ODW_{vol.}$ was about $1.92km^3$. ODW did not occur in the eastern region because circulating seawater was exchanged in that part of Jinhae Bay. As ODW was generated every year in the southwestern region, this is the most polluted area in Jinhae Bay. The ODWR decreased in the northern region, showing that the water quality there has improved since a wastewater treatment plant began operating in 1994.

Characteristics of dissolved gases separated from water mixed with exhalation gases without using a compressor

  • Heo, Pil Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.916-921
    • /
    • 2016
  • It is possible for humans to breathe underwater using dissolved oxygen. However, unlike fish, humans need large amounts of oxygen to breathe underwater. Water generally contains small amounts of dissolved oxygen. To get enough dissolved oxygen from water, great volumes of it should be supplied into a separation device. If exhalation gases are used, the amounts of water supplied into the membrane can be decreased. However, the characteristics of exhalation gases after passage through the separation device need to be investigated. To reuse the exhalation gases, the concentration of carbon dioxide should be decreased. A compressor is needed to supply the exhalation gases because of the high pressure generated in the membrane inlet. However, compressors require a lot of power and are heavy, so it is not proper to get the portable separation device. A system without the compressor is needed. If the pressure of the position mixed from the exhalation is less than atmosphere, the compressor is not needed. In this thesis, characteristics of the gases which are mixed with exhalation gases and separated from water after passing the membrane are investigated. The compositions of carbon dioxide, oxygen, and nitrogen are measured with the gas chromatography. The effects of water and exhalation gas flow rates on characteristics of gases separated from water after the membrane are showed.

Using LNAPL to Enhance in situ Oxygen Transfer: (II) Biotic Condition (LNAPL을 이용한 지중 산소전달 향상: (II) Biotic Condition)

  • Ha, Jeong-Hyub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.337-342
    • /
    • 2004
  • Previous experiment was performed under abiotic condition. Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. Biotic condition was considered in this study. Biotic experiments performed after inoculating the reactor with Pseudomonas putida mt-2, which does not grow on dodecane, indicated that the enhanced oxygen supply in the presence of the LNAPL pool also enhanced biodegradation of a solute (glucose) plume passing beneath the LNAPL pool at steady-state.