• 제목/요약/키워드: oxygen transmission rate

검색결과 90건 처리시간 0.03초

Transparent Conductive Indium Zinc Tin Oxide Thin Films for Solar Cell Applications

  • ;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.208-208
    • /
    • 2010
  • Indium zinc tin oxide (IZTO) thin films were studied as a possible alternative to indium tin oxide (ITO) films for providing low-cost transparent conducting oxide (TCO) for thin film photovoltaic devices. IZTO films were deposited onto glass substrates at room temperature. A dc/rf magnetron co-sputtering system equipped with a ceramic target of the same composition was used to deposit TCO films. Earlier studies showed that the resistivity value of $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20) films could be lowered to approximately $6{\times}10^{-4}ohm{\cdot}cm$ without sacrificing optical transparency and still maintaining amorphous structure through the optimization of process variables. The growth rate was kept at about 8 nm/min while the oxygen-to-argon pressure ratio varied from 0% to 7.5%. As-deposited films were always amorphous and showed strong oxygen pressure dependence of electrical resistivity and electron concentration values. Influence of forming gas anneal (FGA) at medium temperatures was also studied and proven effective in improving electrical properties. In this study, the chemical composition of the targets and the films varied around the $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20). It was the main objective of this paper to investigate how off-stoichiometry affected TCO characteristics including electrical resistivity and optical transmission. In addition to the composition effect, we have also studied how film properties changed with processing variables. IZTO thin films have shown their potential as a possible alternative to ITO thin films, in such way that they could be adopted in some applications where currently ITO and IZO thin films are being used. Our experimental results are compared to those obtained for commercial ITO thin films from solar cell application view point.

  • PDF

Water vapor permeation properties of $Al_2O_3/TiO_2$ passivation layer on a poly (ether sulfon) substrate

  • 권태석;문연건;김웅선;문대용;김경택;한동석;신새영;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.160-160
    • /
    • 2010
  • Organic electronic devices require a passivation layer to ensure sufficient lifetime. Specifically, flexible organic electronic devices need a barrier layer that transmits less than $10^{-6}\;g/m^2/day$ of water and $10^{-5}\;g/m^2/day$ of oxygen. To increase the lifetime of organic electronic device, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. In this study, the passivation layer was deposited using single-process PEALD. The passivation layer, in our case, was a bilayer system consisting of $Al_2O_3$ films and a $TiO_2$ buffer layer on a poly (ether sulfon) (PES) substrate. Because the deposition temperature and plasma power have a significant effect on the properties of the passivation layer, the characteristics of the $Al_2O_3$ films were investigated in terms of density under different deposition temperatures and plasma powers. The effect of the $TiO_2$ buffer layer also was also addressed. In addition, the water vapor transmission rate (WVTR) and organic light-emitting diode (OLEDs) lifetime were measured after forming a bilayer composed of $Al_2O_3/TiO_2$ on a PES substrate.

  • PDF

DC 마그네트론 스퍼터링을 이용한 IZO 박막의 제조와 특성 연구 (Preparation and Characterization of IZO Thin Films grown by DC Magnetron Sputtering)

  • 박창하;이학준;김현범;김동호;이건환
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.188-192
    • /
    • 2005
  • Indium zinc oxide (IZO) thin films were deposited on glass substrate by dc magnetron sputtering. The effects of oxygen flow rate and deposition temperature on electrical and optical properties of the films were investigated. With addition of small amount of oxygen gas, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about $4.8{\times}10^{-4}\Omega{\cdot}cm$. Change of structural properties according to the deposition temperature was observed with XRD, SEM, and AFM. Films deposited above $300^{\circ}C$ were found to be polycrystalline. Surface roughness of the films was increased due to the formation of grains on the surface. Electrical conductivity became deteriorated for polycrystalline IZO films. Consequently, high quality IZO films could be prepared by do sputtering with $O_{2}/Ar{\simeq}0.03$ and deposition temperature in range of $150\~200^{\circ}C$; a specific resistivity of $3.4{\times}10^{-4}{\Omega}{\cdot}cm$, an optical transmission over $90\%$ at wavelength of 550 nm, and a rms value of surface roughness about $3{\AA}$.

시동/정지 반복에 의한 데드엔드형 고분자전해질 연료전지의 성능 감소 (Performance Degradation of Dead-end Type PEMFC by Startup and Shutdown Cycles)

  • 정재현;정재진;송명현;정회범;나일채;이호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.540-544
    • /
    • 2013
  • 고분자전해질연료전지(PEMFC)는 시동/정지과정에서 성능과 수명이 감소한다. 본 연구에서는 캐소드가스로 산소를 사용하는 데드엔드 형 PEMFC의 시동/정지 과정의 영향을 분극곡선, 임피던스(EIS), SEM과 TEM을 사용해 연구하였다. 시동/정지 과정에서 PEMFC 성능감소를 막기 위해서는 더미 로드를 사용해야 함을 보였다. 시동/정지 반복과정 중 50% 상대습도(RH)에서 캐소드 카본지지체의 부식에 의한 열화가 100% RH보다 심했다. 데드엔드 형 PEMFC의 정지과정에서 PEMFC에 물을 공급해줌으로써 50% RH에서 열화속도를 감소시켰다.

포장재를 달리한 고춧가루의 저장조건에 따른 capsaicinoids와 색상 함량 변화 (The Changes of Capsaicinoids and AST A Color Value of Red Pepper Powder Packed with Different Packaging Materials)

  • 이선미;박재복;김선아;황인경
    • 한국식품조리과학회지
    • /
    • 제19권4호
    • /
    • pp.439-446
    • /
    • 2003
  • This study was performed to investigate the change in the chemical components of red pepper powder using different packaging materials and various storage conditions. Red pepper powders with 11 and 15% initial moisture content were packed with five different materials and stored at different temperatures (0, 20, and 30 C) for a one year period. Over the storage period, each combination was periodically sampled, and examined for composition changes. The five packaging materials were: linear low density polyethylene(LLDPE), nylon/LLDPE(Ny/LLDPE), saran coated ethylene vinyl acetate copolymer/linear low density polyethylene(B650), nylon/Tie/nylon/ethylene-vinyl alcohol copolymer/nylon/Tie/LLDPE(RDX-2787) and oriented polypropylene/alumimum/LLDPE(OPP/Al/LLDPE), and the three storage conditions were (28.3${\pm}$1.0)$^{\circ}C$ with (15.5${\pm}$2.8)% relative humidity, (18.6${\pm}$0.5)$^{\circ}C$ with (46.6${\pm}$4.9)% RH, and (0${\pm}$2)$^{\circ}C$ with (80${\pm}$10)% RH, respectively. The moisture contents of all samples changed according to the relative storage humidity, except those of the samples packed with OPP/Al/LLDPE, which remained constant throughout the storage period. The capsaicinoids content of the red pepper powder did not change significantly for 6 months, but gradually decreased after that until about 85% of the original amount remained at the final stage of storage. The ASTA color values of all samples decreased gradually throughout the storage period. The higher the storage temperature, the more severe the deterioration. The color deterioration seemed greatly related to the existence of oxygen, as the deterioration was especially severe in the samples packed with LLDPE and B650, where the oxygen transmission rate were highest among the five packaging materials.

DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구 (Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films)

  • 박새봄;김치환;김태규
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

몇가지 저장온도와 비천공 Breathable 필름이 아위버섯(Pleurotus ferulae) 저장수명과 품질에 미치는 영향 (Effect of Non-perforated Breathable Films on the Shelf Life and Quality of Ferulae Mushroom (Pleurotus ferulae) during MA Storage at Different Temperatures)

  • 최인이;손진성;김영재;권태호;강호민
    • 생물환경조절학회지
    • /
    • 제21권3호
    • /
    • pp.261-266
    • /
    • 2012
  • 본 실험은 다양한 저장온도 조건에서 아위버섯에 적합한 MAP용 포장재 구명을 위해 수행하였다. 저장중 생체중 감소는 저장온도가 낮을수록 적었는데, 모든 온도 처리(1, 8, $24^{\circ}C$)에서 저장 종료일까지 1.5% 이하로 낮았다. 1저장에서는 산소투과율이 $1,300cc/m^2{\cdot}day{\cdot}atm$ 인 필름 처리구가 가장 큰 저장수명(42일)을 보였으며 저장중 포장내 산소/이산화탄소의 대기조성 조건도 가장 적합한 MA조건인 5%/15% 수준이었으나, 높은 에틸렌 농도와 이취를 보인 반면 3,000cc 처리구는 1,300cc 처리구와 비슷한 대기조성 조건을 갖추고 낮은 에틸렌 농도과 이취를 보였다. 따라서 $1^{\circ}C$에서는 1,300cc와 3,000cc 필름이 적합하였다. 저장중 대기조성이 필름처리간 차이가 없었던 $8^{\circ}C$ 저장에서는 에틸렌 농도가 두 번째로 낮았고 외관상 품질이 가장 높아 저장수명이 19일로 가장 길었던 3,000cc 필름이 적합하였다. 저장 온도가 높아 호흡이 급격히 빨라져 극도의 CA 조건이 만들어졌던 $25^{\circ}C$에서는 외관상 품질에서 가장 양호하였던 1,300cc 필름으로 적합하였다. 또한 온도별 저장수명이 $25^{\circ}C$에 비해 $8^{\circ}C$는 4배, $1^{\circ}C$는 9배나 연장되어 수확 후 저온유통이 반드시 필요하다고 판단되었다.

FTS 장치를 이용한 가스 차단막용 SiOx 및 SiOxNy 박막의 공정특성 (Process Characteristics of SiOx and SiOxNy Films on a Gas Barrier Layer using Facing Target Sputtering (FTS) System)

  • 손진운;박용진;손선영;김화민
    • 한국전기전자재료학회논문지
    • /
    • 제22권12호
    • /
    • pp.1028-1032
    • /
    • 2009
  • In this study, the influences of silicon-based gas barrier films fabricated by using a facing target sputtering(FTS) system on the gas permeability for flexible displays have been investigated. Under these optimum conditions on the $SiO_x$ film with oxygen concentration($O_2/Ar+O_2$) of 3.3% and the $SiO_xN_y$ film with nitrogen concentration($N_2/Ar+O_2+N_2$) of 30% deposited by the FTS system, it was found that the films were grown about 4 times higher deposition rate than that of the conventional sputtering system and showed high transmittance about 85% in the visible light range. Particularly, the polyethylene naphthalate(PEN) substrates with the $SiO_x$ and/or $SiO_xN_y$ films showed the enhanced properties of decreased water vapor transmission rate (WVTR) over $10^{-1}\;g/m^2{\cdot}day$ compared with the PEN substrate without any gas barrier films, which was due to high packing density in the Si-based films with high plasma density by FTS process and/or the denser chemical structure of Si-N bond in the $SiO_xN_y$ film.

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • 권덕현;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Multifunctional Indium Tin Oxide Thin Films

  • 장진녕;장윤성;윤장원;이승준;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.162-162
    • /
    • 2016
  • We present multifunctional indium tin oxide (ITO) thin films formed at room temperature by a normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions (NOIs). The ITO thin film possesses not only low resistivity but also high gas diffusion barrier properties even though it is deposited on a plastic substrate at room temperature without post annealing. Argon neutrals incident to substrates in the sputtering have an optimal energy window from 20 to 30 eV under the condition of blocking energetic NOIs to form ITO nano-crystalline structure. The effect of blocking energetic NOIs and argon neutrals with optimal energy make the resistivity decrease to $3.61{\times}10-4{\Omega}cm$ and the water vapor transmission rate (WVTR) of 100 nm thick ITO film drop to $3.9{\times}10-3g/(m2day)$ under environmental conditions of 90% relative humidity and 50oC, which corresponds to a value of ~ 10-5 g/(m2day) at room temperature and air conditions. The multifunctional ITO thin films with low resistivity and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF