• Title/Summary/Keyword: oxygen transmissibility

Search Result 13, Processing Time 0.027 seconds

Study on the Polymerization of Hydrogel Polymer Containing HEMA and Measurement Method of Oxygen Transmissibility (HEMA를 포함한 친수성 폴리머 중합 및 산소 투과율 측정 방법에 관한 연구)

  • Kim , Tae-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.749-754
    • /
    • 2009
  • HEMA (2-hydroxyethyl methacrylate) is a hydrophilic material which is broadly used for ophthalmologic purposes and especially in the manufacture of soft contact lenses. Also, the oxygen transmissibility (Dk/t) is a very important physical characteristic in the evaluation of a material’s adequacy to be used to produce contact lenses. This study used HEMA (2-hydroxyethyl methacrylate), MMA (methylmethacrylate), NVP (Nvinyl-pyrrolidone), the cross-linker EGDMA (ethylene glycol dimethacrylate) for copolymerization, and measured the oxygen transmissibility of the central and peripheral areas of the manufactured general and color contact lenses using the polarographic method. The measurement showed that the decreased amount of oxygen transmissibility of the central and peripheral areas of the contact lenses measured using the polarographic method range between 40.77% and 49.13%, and the oxygen transmissibility of the color contact lens showed a larger decrease due to the effects of the coloring materials.

Comparison of Physical Properties of Domestic Contact Lenses -Focusing on oxygen transmissibility- (국내 생산 콘택트렌즈의 물리적 특성 비교 -산소전달률을 중심으로-)

  • Kim, Ki-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.393-403
    • /
    • 2018
  • Although the use of silicone hydrogel contact lenses which are known to have high oxygen transmissibility is increasing, they are being sold without any product labeling of physical properties such as water content and oxygen transmissibility. To analyze the physical properties such as the water content and oxygen transmissibility of approved silicone hydrogel contact lenses, this study collected and analyzed the approval information published on the KFDA website. Of 68 cases of domestic silicone hydrogel contact lenses analyzed in this study, 61 cases (89.7%) did not meet the international standard for oxygen permeability. This is because lenses that are not different from hydrogel contact lenses were submitted for approval as silicone hydrogel contact lenses because there is no domestic standard for silicone hydrogel contact lenses. In future, besides the information published on the website, analysis of the physical properties of a wide variety of actual silicone hydrogel contact lenses on the market is required.

Polymerization of Hydrogel Contact Lens with High Oxygen Transmissibility (산소투과성이 뛰어난 Hydrogel 콘택트렌즈 합성)

  • Sung, A-Young;Kim, Tae-Hun;Kong, Jung-Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • Acrylate -PDMS(Polydimethylsiloxane)-Urethane Prepolymer is synthesized through treating diisocynate, HEMA(2-hydroxyethylmethacrylate) and bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) having high oxygen permeability under the DBTDL(Dibutylitin dilaurate) catalyst. Modification of HEMA on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to be able to polymerize with other contact lens materials. And modification of urethane on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to increase elastic property and oxygen transmissibility. This material is analyzed by FT-IR and also will be used to make hydrogel contact lens.

  • PDF

Copolymerization and Contact Lens Application of HEMA-Substituted Polyphosphazene (HEMA가 치환된 Polyphosphazene의 공중합 및 콘택트렌즈 응용)

  • Kim, Tae-Hum;Seong, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.340-344
    • /
    • 2009
  • HEMA/vinyl-substituted polyphosphazene was prepared by the ring-opening polymerization of phosphonitrillic chroride trimer at $200{\sim}300\;{^{\circ}C}$, followed by Grignard reaction with vinyl magnesium bromide and then by the reaction with HEMA(2-hydroxyethyl methacrylate). HEMA/vinyl-substituted polyphosphazene was copolymerized with EGDMA(ethylene glycol dimethacrylate; used as a cross-linker for the free-radical copolymerization), NVP (N-vinyl-pyrrolidone) in the presence of AIBN (azobisisobutyronitrile) as a radical initiator. The oxygen transmissibility, water content and visible-ray transmissibility of the resulting copolymer were measured to be Dk/t 88, 30.89% and 87%, respectively, indicating that the copolymer can be used as a good contact lens material.

Biosafety of the New Soft Contact Lens Materials in the Fibroblast L-929 Cell Line (흰쥐의 섬유아세포 L-929를 이용한 새로운 Soft Contact Lens 소재의 생물안전성 검증)

  • You, Young-Hyun;Nam, Joo-Hyeung;Kim, Bieong-Kil;Kim, Soon-Bok;Moon, Ik-Jae;Kim, Jong-Pil;Seu, Young-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • In this study, we polymerized new materials for soft contact lens using HEMA (2-hydroxyethyl methacrylate) which is the based-monomer of soft contact lens, EGDMA (ethylene glycol dimethacrylate) as cross linkage agent, and the new additives of monoester or di-ester derived from itaconic acid commercially produced by the fermentation of Asp. itaconicus. New polymer materials for soft contact lens were synthesized with the mixture of HEMA and mono- or diester at different ratios and presented to a good water content and oxygen transmissibility (Dk/L) values. In case of polymerization with HEMA and mono-ester (15%), the water content and oxygen transmissibility of contact lens were found to be good values at 57.6% and 28.5 Dk respectively. The mixture of HEMA and mono-ester is more excellent than HEMA/di-ester in the water content and oxygen transmissibility. The toxicity of new contact lens materials were confirmed in the fibroblast L-929 cell line using a agar overlay test and a growth inhibition test with the extract solution of contact lens.

Study on the Silicone Contact Lens Using AA and BMA (AA(Acrylic acid)와 BMA(Butyl methacrylate)를 이용한 실리콘 콘택트렌즈에 관한 연구)

  • Kim, Tae-Hun;Yae, Ki-Hun;Kweon, Young-Seok;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.259-265
    • /
    • 2006
  • We polymerized material of AA(Acrylic acid) and BMA(butyl methacrylate) to make up for the weak points of hydrogel contact lens. The synthesis process of silicone synthesis is as follows. Acrylate-PDMS(Polydimethylsiloxane)-Urethane prepolymer was composed after Diisocynate reacted with HEMA(2-hydroxyethylmethacrylate) under the catalyst and it reacted again with bis(hydroxyalkyl) terminated poly(dimethylsiloxane) with high oxygen transmissibility characteristics. HEMA(2-hydroxyethylmethacrylate) was used to make prepolymer that can be polymerized and the urethane was used to improve elasticity and oxygen transmissibility, copolymerization was performed with conventional hydrogel contact lens materials to make silicone hydrogel contact lens with higher oxygen transmissibility. For manufacturing of contact lens, We added BMA(Butyl methacrylate) with better elasticity and flexibility, and AA(Acrylic acid) with higher moisturizing to used contact lens materials. AIBN (Azobis2-methylpropionitrile) as initiator and EGDMA(Ethylene Glycol Dimethacrylat) as crosslinking agent were used and the lens with higher oxygen transmissibility and better moisturizing were manufactured complying with basic contact lens properties, which have several combination trial of each monomer characteristics. Compounding SN which included SILICONE, HEMA, NVP and EGDMA etc was showed by swelling ratio of 9.38% and water content of 23.7%. SN was showed by swelling ratio of 9.38%, water content of 23.7% and a visible ray transmissibility of 89%. SB which added BMA in the SN was showed by swelling ratio of 12.50%, water content of 18.56% and a visible ray transmissibility of 88%. SAB which added both AA and BMA in the SN was showed by swelling ratio of 8.33%, water content of 12.93% and a visible ray transmissibility of 88%.

  • PDF

Preparation and Physical Properties of Silicone Hydrogel Ophthalmic Lens Containing Hydrophilic Monomer

  • Lee, Min-Jae;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.261-266
    • /
    • 2016
  • The major physical characteristics of macromolecules used in silicone hydrogel ophthalmic lenses include optical transmittance, oxygen permeability, water content, and refractive index. For the preparation of highly functional silicone hydrogel lens materials, two silicone monomers were used in the presence of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA). The samples containing HEMA and HPMA had oxygen transmissibility (Dk) values in the range of 73.38–50.98 × 10-11 (cm2/s) (mLO2/mL×mmHg) and 71.94–42.80 × 10-11 (cm2/s) (mLO2/mL×mmHg), respectively. Furthermore, the water contents of samples containing HEMA and HPMA were in the range of 32.73–34.67% and 31.94–33.74%, respectively, and the refractive indices were in the range of 1.4348–1.4364 and 1.4385–1.4407, respectively. Thus, silicone monomers containing HEMA and HPMA are expected to be useful for fabricating high-oxygen-permeability silicon hydrogel ophthalmic lenses.

Synthesis and Application for Ophthalmic Material of Polydimethylsiloxanewith Methacrylate Endgroup (Methacrylate 말단기를 가진 Polydimethylsiloxane의 합성 및 안의료용 소재로의 응용)

  • Ye, Ki-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.335-339
    • /
    • 2009
  • Polydimethylsiloxane (PDMS) with methacrylate endgroup is used as contact lens material with elasticity and high oxygen permeability. PDMS prepolymer with methacrylate endgroup was prepared by reacting PDMS (polydimethylsiloxane) with HEMA (2-hydroxyethyl methacrylate). The HEMA-substituted PDMS prepolymer was then copolymerized using AIBN (azobisisobutyronitrile) with BMA (butyl methacrylate; to increase elasticity and flexibility). The water content, oxygen permeability, and visible-ray transmissibility of the resulting polymer were measured to be 23%, 83% and Dk/t > 50, indicating that the copolymer can be used as a good contact lens material.

Polymerization of HEMA by Electron beam Irradiation and Fabrication of Soft contact lens (전자빔조사에 의한 HEMA의 중합과 소프트콘택트렌즈 제조)

  • Hwang, Kwang-Ha;Shin, Joong-Hyeok;Sung, Yu-Jin;Jeong, Keun-Seung;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • Purpose: Polymerization of HEMA(2-hydroxyethyl methacrylate) which can be used in the soft contact lens has been performed by using electron beam(EB) irradiation, and examined the best condition for the polymerization. Comparing the physical properties of the contact lenses to the one fabricated by thermal polymerization method, we check the use possibility of the EB irradiation to the fabrication of the soft contact lens. Methods: We investigated the degree of polymerization of the HEMA according to the composition of the monomer, the additive ratio and the dose of electron beam (0~120 kGy). The degree of polymerization was measured depending on the EB dose to research the best synthetic condition under the EB irradiation. The physical properties of the contact lens such as water content(%), oxygen transmissibility(Dk/t) and optical transmittance were analysed by using the FT-IR results with comparing the two different polymerization method (thermal and electron beam polymerization) with same additive ratio. Results: When the dose of electron beam was above 100 kGy, the degree of polymerization of HEMA was above 99% with regardless using cross-linker and initiator. The water content of the lens fabricated by EB method showed 10% higher than the one by the thermal method which was 40%. The lens fabricated by EB method also showed higher oxygen transmissibility(Dk/t) as same with the water content, and showed twice higher value in the lens fabricated by pure HEMA. According to the FT-IR results, hydrophilic property of the lens fabricated by EB method was increased due to increasing the intermolecular hydrogen bonding. It showed above 90% optical transmittance in the visible range of wavelength on the contact lenses fabricated by the both of two different polymerization method. Conclusions: The polymerization of HEMA without cross-linker and initiator was successful above 100 kGy of EB irradiation. Moreover the lens fabricated from the polymer synthesized by pure HEMA with 100 kGy of EB showed the highest water content and oxygen transmissibility. Therefore EB irradiation is another possible method to synthesize the polymer which can be used for the soft contact lens.