• 제목/요약/키워드: oxygen production rate

검색결과 402건 처리시간 0.028초

휴식과 운동 중 COVID-19 대응 보건용 마스크 착용이 호흡·심혈관계 반응 및 착용감에 미치는 영향 (Effects of Wearing COVID-19 Protective Face Masks on Respiratory, Cardiovascular Responses and Wear Comfort During Rest and Exercise)

  • 정재연;강찬혁;성유찬;장세혁;이주영
    • 한국의류산업학회지
    • /
    • 제22권6호
    • /
    • pp.862-872
    • /
    • 2020
  • This study explores the effects of facemasks on respiratory, thermoregulatory, cardiovascular responses during exercise on a treadmill and at rest. Five male subjects (25.8 ± 0.8 y, 171.8 ± 9.2 cm in height, 79.8 ± 28.1 kg in weight) participated in the following five experimental conditions: no mask, KF80, KF94, KF99, and N95. Inhalation resistance was ranked as KF80 < KF94 < N95 < KF99 and dead space inside a mask was ranked as KF80 = KF94 < N95 < KF99. The surface area covered by a mask was on average 1.1% of the total body surface area. The results showed no significant differences in body core temperature, oxygen consumption (VO2), carbon dioxide production (VCO2), heart rate or subjective perception among the five experimental conditions; however, cheek temperature, respiratory ventilation and blood pressure were greater for KF80 or KF94 conditions when compared to KF99 or N95 conditions (p<0.05). The differences among mask conditions are attributed to the dead space or specific designs (cup type vs pleats type) rather than the filtration level. In addition, the results suggest that improving mask design can help mitigate respiratory resistance from increased filtration.

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • 한국작물학회지
    • /
    • 제69권1호
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

염색 폐수 슬러지를 활용한 탄소저감형 이산화티타늄 제조 및 특성 분석 (Carbon-Reduced Titanium Dioxide Production and Characterization Using Dyeing Wastewater Sludge)

  • 김종규
    • 한국재료학회지
    • /
    • 제34권5호
    • /
    • pp.254-260
    • /
    • 2024
  • This study is to manufacture a titanium dioxide (TiO2) photocatalyst by recycling sludge generated using titanium tetrachloride (TiCl4) as a coagulant. Compared to general sewage, a TiCl4 coagulant was applied to dyeing wastewater containing a large amount of non-degradable organic compounds to evaluate its performance. Then the generated sludge was dried and fired to prepare a photocatalyst (TFS). Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and nitrogen oxide reduction experiments were conducted to analyze the surface properties and evaluate the photoactive ability of the prepared TFS. After using titanium tetrachloride (TiCl4) as a coagulant in the dyeing wastewater, the water quality characteristics were measured at 84 mg/L of chemical oxygen demand (COD), 10 mg/L of T-N, and 0.9 mg/L of T-P to satisfy the discharge water quality standards. The surface properties of the TFS were investigated and the anatase crystal structure was observed. It was confirmed that the ratio of Ti and O, the main components of TiO2, accounted for more than 90 %. As a result of the nitric oxide (NO) reduction experiment, 1.56 uMol of NO was reduced to confirm a removal rate of 20.60 %. This is judged to be a photocatalytic performance similar to that of the existing P-25. Therefore, by applying TiCl4 to the dyeing wastewater, it is possible to solve the problems of the existing coagulant and to reduce the amount of carbon dioxide generated, using an eco-friendly sludge treatment method. In addition, it is believed that environmental and economic advantages can be obtained by manufacturing TiO2 at an eco-friendly and lower cost than before.

마치현 추출물 함유 제제 KDC16-2의 생리 활성 효과 (Bioactive effects of a Herbal Formula KDC16-2 Consisting Portulaca oleracea L. Extracts)

  • 허가영;이소영;김연용;장현재;이승재;이승웅;최정호;노문철
    • 생약학회지
    • /
    • 제50권1호
    • /
    • pp.37-45
    • /
    • 2019
  • Portulaca oleracea L. (PL) has been used in traditional medicine herb for treatment of various diseases, such as diarrhea, dysentery, and skin inflammation. Previous studies have shown that the PL regulates the inflammation by inhibition of pro-inflammatory cytokines. Although PL might have improvement effects of intestinal function and bioactive effects, there are not enough studies to demonstrate. This study investigated the effects of KDC16-2 on the improvement of intestinal function and anti-inflammatory effects in vivo and in vitro. The improvement effect of intestinal function was measured fecal amount, water content and intestinal transit rate in KDC16-2 treated ICR mice. As results, compared with the control group, the KDC16-2 group showed a significant increase in wet fecal weight, dry fecal weight and fecal water content. The intestinal transit rate of KDC16-2 group was significantly increased. Based on the results, KDC16-2 is considered to have effects on improving intestinal function. The effect of anti-inflammatory demonstrated by using dextran sulfate sodium (DSS)-induced colitis mice. The mice were administered 3% DSS along with KDC16-2 (100, 300 mg/kg) for 14 days. DSS-induced colitis mice were significantly ameliorated in KDC16-2 treated group, including body weight loss, colon length shortening, tight junction protein of colon and histological colon injury. The levels of inflammatory mediators (IgG2a, IgA, C-reactive protein and Myeloperoxidase) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$, Interleukin (IL)-6) which are involved in inflammatory responses were increased in the DSS-treated group as compared to those in the control group, and the levels were significantly decreased in the KDC16-2 groups. In addition, we investigated the impact of KDC16-2 on lipopolysaccharide (LPS)-induced inflammatory responses in J774A.1 cells. KDC16-2 inhibited production of prostaglandin E2 (PGE2) and reactive oxygen species (ROS). These results suggested that the KDC16-2 could effectively alleviate the dysfunction of intestinal and inflammatory mediators. Thus, these KDC16-2 can be potentially used as health functional food of intestinal.

잉여슬러지의 오존분해에 따른 VFA의 생성 및 인 방출을 위한 탄소원으로의 재이용 가능성에 관한 연구 (The Study on Ozone Treatment of Wasting Activated Sludge for VFA Production and Reuse as Carbon Source for Phosphorus Release)

  • 고은택;조진우;박은영;안규홍
    • 대한환경공학회지
    • /
    • 제27권10호
    • /
    • pp.1052-1057
    • /
    • 2005
  • 본 연구에서는 오존분해 된 슬러지를 인 방출을 위한 외부 탄소원으로 사용하기 적절한지 평가하기 위하여 오존 주입량 변화에 따라 오존분해된 슬러지의 성상변화와 함께 인 방출 실험 및 VFA(Volatile Fatty Acid) 생성량을 살펴보았다. 슬러지를 오존 주입량 0.5 g $O_3/g$ SS로 분해했을 경우 TCOD(Total Chemical Oxygen Demand)와 TSS(Total Suspended Solid)는 오존분해 전 7050, 4900 mg/L에서 5850, 2867 mg/L로 각각 17, 41% 감소하였다. 또한, pH는 6.6에서 3.8로 감소하였고, SCOD(Soluble Chemical Oxygen Demand)는 38.7 mg/L에서 2760 mg/L로 약 70배 증가함을 보였다. 오존 분해에 의해 acetic acid와 같은 VFA도 새로이 생성됨을 확인하였다. Acetic acid의 경우 0.05 g $O_3/g$ SS로 분해된 슬러지에서 50.24 mg/L가 생성되었으며, 0.5 g $O_3/g$ SS로 분해된 슬러지의 경우는 123.56 mg/L로 증가되었다. 그러나 혐기성 소화에 의한 VFA의 증가량은 0.05 g $O_3/g$ SS로 분해된 슬러지에서 Acetic acid가 50.24 mg/L에서 219.28 mg/L로 가장 많이 증가되었다. 또한 낮은 오존 주입량(0.05, 01 g $O_3/g$ SS)으로 분해된 슬러지에서 관찰되지 않았던 Propionic acid는 46 mg/L가 새로이 증가하였다. 그 외 혐기성 소화로 인해 n-Butyric Acid, Propionic Acid, n-Butyric Acid, Isovaleric Acid, Valleric Acid의 농도도 증가하였다. 오존 주입량에 따라 SCOD, VFA의 농도는 증가하지만 인 방출 속도 및 경제성을 고려하여 적정 오존 주입 농도는 0.05-0.1 g $O_3/g$ SS로 조사되었다.

버섯의 갈변병 유발세균 Pseudomonas tolaasii의 길항세균인 Pseudomonas fluorescens의 분리동정 및 배양조건 (Identification of Pseudomonas fluorescens antagonistic to Pseudomonas tolaasii and its cultivation)

  • 박범식;조남철전억한
    • KSBB Journal
    • /
    • 제7권4호
    • /
    • pp.296-301
    • /
    • 1992
  • 버섯 갈변병 유발세균인 Pseudomonas tolaasii와 이에 대해 길항성을 나타내는 세균을 버섯으로부터 각각 분리 하여 Gram staining, gelatin liquefaction, oxidase test 등을 통해 P. fluorescens와 P. tolaasii 를 동정하였으며 , pigment production, tempera t ture sensitivity, salt tolerance, 그리고 rapid pit­ting test 등의 여러가지 실험을 통하여 특정을 알아 보았다. 또한 P. fluorescens를 대량으로 배양하기 위하여 최적 배지조성 및 배양의 최척조건을 확립하였고, 세포농도를 높이기 위하여 유가배양을 시행하였다. 세포성장에 있어서 carbon 및 energy source 인 glucose의 경우 30g/L일 때 세포농도가 가장 높았으며, yeast extract의 농도가 10g/L에서 세포농도가 최적으로 성장하였다. 질소원인 $NH_4Cl$${(NH_4Cl)}_2SO_4$는 각각 1.0g/L와 O.lg/L일 때 세포성장이 가장 좋게 나타났고, sulfur source인 $MgSO_4{\cdot}7H_2O$의 최적농도는 1.0g/L였다. 그리고 $KH_2PO_4$$CaCl_2$는 각각 1.0g/L와 O.lg/L일 때 세포농도가 가장 높았으며, 온도 $30^{\circ}C$, pH 6.0 그라고 DO는 40 %로 유지시켰을 때 세포성장이 가장 높았으며, 유가배양에 의해 세포농도를 증가시킬 수 있었다.

  • PDF

Increase in the Th1-Cell-Based Immune Response in Healthy Workers Exposed to Low-Dose Radiation - Immune System Status of Radiology Staff

  • Karimi, Gholamreza;Balali-Mood, Mahdi;Alamdaran, Seyed-Ali;Badie-Bostan, Hassan;Mohammadi, Elaheh;Ghorani-Azam, Adel;Sadeghi, Mahmood;Riahi-Zanjani, Bamdad
    • 대한약침학회지
    • /
    • 제20권2호
    • /
    • pp.107-111
    • /
    • 2017
  • Objectives: Radiation is one of the most important sources of free radical (such as reactive oxygen species) production, which plays an essential role in the etiology of over hundred diseases. The aim of the study was to investigate some immune parameters and hematological indices in healthy workers of the Radiology Department, University Hospital of Mashhad, Iran. Methods: The study was performed on 50 healthy workers: 30 radiology staff as the case group and 20 laboratory workers as the control group. The radiation dose received by the radiology staff participating in the study was less than the annual maximum permissible level, 50 millisievert. Hematological parameters, lymphocyte proliferation and cytokine production were studied in both groups. Results: Among healthy radiology workers, the hematological indices did not differ statistically; however, their proliferation indices and $IFN-{\gamma}$ levels showed significant increases in parallel with decreases in the IL-4 levels as compared to controls. The immune system of workers exposed to low-dose ionizing radiation was found to be shifted from a Type 2 to a Type 1 response to promote cellular immunity. Conclusion: Based on our data, exposure to low-dose ionizing radiation may decrease the prevalence, frequency, and recurrence of various cancers and infectious diseases because of an increase in Th1-cell-based response, thus leading to more protection of the human body against tumor cells and foreign agents and possibly increased longevity. However, due to high rate of fluoroscopy use for interventional radiology, we suggest continuing research projects on radiation protection and hazards to prevent irreversible damage. As a recommendation, in future studies, radiology staff with a weakened immunity due to high radiation exposure should be considered as good choices to be treated using acupuncture techniques because acupuncture has been demonstrated to enhance the function and the number of immune cells.

하수슬러지 가용화와 하수처리 운전조건 개선을 통한 하수슬러지 발생저감 연구 (Study on Sludge Reduction by Sludge Solubilization and Change of Operation Conditions of Sewage Treatment Process)

  • 최인수;정회석;한인섭
    • 대한환경공학회지
    • /
    • 제31권12호
    • /
    • pp.1113-1122
    • /
    • 2009
  • 하수슬러지의 해양투기 배출규제에 대한 대체 처리방안으로, 하수슬러지의 초음파 가용화를 통한 재기질화와 하수처리 공정에 대한 개선을 통한 슬러지 발생량의 저감방안을 살펴보았다. 분리막 반응조(MBR) 실험을 통해 SRT를 점진적으로 SRT=5.1일에서 442일까지 증가시켰으며, 이때 반응조내 미생물의 평균 농도값은 $c_B$=3.4 $gTSSL^{-1}$에서 $c_B$=14.5 $gTSSL^{-1}$까지 증가하였다. 이때 기질제거율과 미생물의 성장량과의 관계를 나타내는 미생물 수율($Y_{B/S}$)는 SRT=5.1일 일때의 약 0.5-0.7에 비해 SRT=442일 일때 0.005-0.007로 저감되어, 직접적인 슬러지 발생량의 감소를 가져오게 되는 것을 확인하였다. 반응 조내 미생물 농도와 폭기효율과의 관계를 프로펠러 루프 반응조에서 교반속도에 따른 산소전달계수와 ${\alpha}$-factor의 변화로써 살펴보았다. 한편 슬러지에 대한 초음파 가용화는 에너지 투입량에 따라 가용화 효율이 증가하고, 가용화한 슬러지의 혐기성 소화효율은 가용화하지 않은 슬러지에 비해 바이오가스 발생량이 많았다.

공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향 (The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling)

  • 박윤정;이상회;김치년;원종욱;노재훈
    • 한국산업보건학회지
    • /
    • 제8권1호
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.