• Title/Summary/Keyword: oxygen potential

Search Result 1,428, Processing Time 0.03 seconds

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF

Protective Effect of Luteolin against β-Amyloid-induced Cell Death and Damage in BV-2 Microglial Cells (베타아밀로이드로 유도된 신경소교세포 사멸에 대한 루테올린의 보호효과 연구)

  • Park, Gyu Hwan;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate neuroprotective effects and molecular mechanisms of luteolin against ${\beta}$-amyloid ($A{\beta}_{25-35}$)-induced oxidative cell death in BV-2 cells. Methods : The protective effects of luteolin against $A{\beta}_{25-35}$-induced cytotoxicity and apoptotic cell death were determined by MTT dye reduction assay and TUNEL staining, respectively. The apoptotic cell death was further analyzed by measuring mitochondrial transmembrane potential and expression of pro- and/or anti-apoptotic proteins. To elucidate the molecular mechanisms underlying the protective effects of luteolin, intracellular accumulation of reactive oxygen species, oxidative damages, and expression of antioxidant enzymes were examined. Results : Luteolin pretreatment effectively attenuated $A{\beta}_{25-35}$-induced apoptotic cell death indices such as DNA fragmentation, dissipation of mitochondrial transmembrane potential, increased Bax/Bcl-2 ratio, and activation of c-Jun N-terminal kinase and caspase-3 in BV-2 cells. Furthermore, $A{\beta}_{25-35}$-induced intracellular formation of reactive oxygen species and subsequent oxidative damages such as lipid peroxidation and depletion of endogenous antioxidant glutathione were suppressed by luteolin treatment. The neuroprotective effects of luteolin might be mediated by up-regulation of cellular antioxidant defense system via up-regulation of ${\gamma}$-glutamylcysteine ligase, a rate-limiting enzyme in the glutathione biosynthesis and superoxide dismutase, an enzyme involved in dismutation of superoxide anion into oxygen and hydrogen peroxide. Conclusions : These findings suggest that luteolin has a potential to protect against $A{\beta}_{25-35}$-induced neuronal cell death and damages thereby exhibiting therapeutic utilization for the prevention and/or treatment of Alzheimer's disease.

Effects of Powder Property and Sintering Atmosphere on the Properties of Burnable Absorber Fuel : I. $UO_2-Gd_2O_3$ Fuel

  • K. W. Song;Kim, K. S.;H. S. Yoo;Kim, J. H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.171-176
    • /
    • 1997
  • UO$_2$-Gd$_2$O$_3$fuel has been sintered to study the effect of powder property and sintering atmospheres on densification and microstructure. Three types of powders have been used; AUC-UO$_2$ powder and ADU-UO$_2$ powder were mixed with Gd$_2$O$_3$ Powder, and co-milled AUC-UO$_2$ and Gd$_2$O$_3$ powder. UO$_2$-(2, 5, 10)wt% Gd$_2$O$_3$pellets have been sintered at 168$0^{\circ}C$ for 4 hours in the mixture of H$_2$ and $CO_2$ gases, of which oxygen potential has been controlled by the ratio of $CO_2$ to H$_2$ gas. Densities of UO$_2$-Gd$_2$O$_3$ fuel pellets are quite dependent on powder types, and UO$_2$-Gd$_2$O$_3$ fuel using co-milled UO$_2$ powder yields the highest density. A long range homogeneity of Gd is determined by powder mixing. As the oxygen potential of sintered atmosphere increases, the sintered densities of UO$_2$-Gd$_2$O$_3$ pellets decrease but grain size increases. In addition, (U, Gd)O$_2$ solid solution becomes more homogeneous. The UO$_2$-Gd$_2$O$_3$fuel having adequate density and homogeneous microstructure can be fabricated by co-milling powder and by high oxygen potential.

  • PDF

The Effect of Chemical Pretreatment on Steam Explosion and Oxygen-alkali Pulping of Oak Wood (참나무재의 약액함침 처리가 폭쇄 및 산소-알칼리펄프화에 미치는 영향)

  • 박승영;최태호;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.75-83
    • /
    • 2001
  • The potential of oxygen delignification is a powerful tool to reduce detrimental environmental effects. This study was performed to investigate the effect of steam explosion treatment of chemically treated oak wood on oxygen-alkali pulping. Pulp yield during steam explosion treatment by ${Na_2}{O_3}$-NaOH impregnation was higher than the other impregnation chemicals. Also, NaOH extraction at room temperature after steam explosion treatment improved the kappa number from 140~116 to 90~64. Oxygen-alkali pulping of chemical steam explosion treated woods affected to pulp yields. ${Na_2}{O_3}$-NaOH impregnation was very effective to higher carbohydrate yields at same delignification level. Its carbohydrate yield seemed to be highly related to the effluent pH. Oxygen-alkali pulping after steam explosion treatment of ${Na_2}{O_3}$-NaOH impregnated wood was shown that carbohydrate yield was very high because its effluent pH was increase from natural to mild alkali. Even if oxygen bleaching limit the delignification to 50% in order to avoid unacceptable yield and viscosity losses, oxygen-alkali pulping after steam explosion by ${Na_2}{O_3}$-NaOH impregnation was possible to extend the delignification more than 80%. Considering high pulp yield with lower lignin content from steam explosion treated wood, it might be profitable to end the cook at a high kappa number instead of a low kappa number, and continuously apply the oxygen delignification, in order to better quality pulp.

  • PDF

Methyl Viologen Mediated Oxygen Reduction in Ethanol Solvent: the Electrocatalytic Reactivity of the Radical Cation

  • Lin, Qianqi;Li, Qian;Batchelor-McAuley, Christopher;Compton, Richard G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.71-80
    • /
    • 2013
  • The study of methyl viologen ($MV^{2+}$) mediated oxygen reduction in electrolytic ethanol media possesses potential application in the electrochemical synthesis of hydrogen peroxide mainly due to the advantages of the much increased solubility of molecular oxygen ($O_2$) and high degree of reversibility of $MV^{2+/{\bullet}+}$ redox couple. The diffusion coefficients of both $MV^{2+}$ and $O_2$ were investigated via electrochemical techniques. For the first time, $MV^{2+}$ mediated $O_2$ reduction in electrolytic ethanol solution has been proved to be feasible on both boron-doped diamond and micro-carbon disc electrodes. The electrocatalytic response is demonstrated to be due to the radical cation, $MV^{{\bullet}+}$. The homogeneous electron transfer step is suggested to be the rate determining step with a rate constant of $(1{\pm}0.1){\times}10^5M^{-1}s^{-1}$. With the aid of a simulation program describing the EC' mechanism, by increasing the concentration ratio of $MV^{2+}$ to $O_2$ electrochemical catalysis can be switched from a partial to a 'total catalysis' regime.

Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction (산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조)

  • Lee, Young-geun;An, Geon-hyeong;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.182-188
    • /
    • 2018
  • Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

  • Shahid, Muhammad;Choi, Seo-Yeong;Liu, Jingling;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2271-2275
    • /
    • 2013
  • We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a $H_2$ (1 torr) environment. Depending on the temperature used for the reaction with $H_2$, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW $cm^{-2}$ illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient $TiO_2$ mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made.

Changes of Survival, Growth and Oxygen Consumption in the Oliver Flounder, Paralichthys olivaceus Exposed to TBT (TBT의 노출에 따른 넙치, Paralichthys olivaceus의 생존, 성장 및 산소소비의 변화)

  • 강주찬;황운기;지정훈
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.219-224
    • /
    • 2002
  • This study was carried out to examine the effects of bis (tribytyltin)oxide (TBT), endocrine disrupting compounds (EDCs). on the changes of survival, growth and oxygen consumption rate in the oliver flounder, Paralichthys olivaceus. Oliver Flounders were exposed to sublethal concentration of TBT (0, 1.67, 3.20, 6.30 and 12.50 $\mu\textrm{g}$/L) during 6 weeks. Survival rate was decreased in a concentration and exposure period-dependent way and suddenly the reduction of more than 20% occurred at TBT concentration greater than 3.20 $\mu\textrm{g}$/L. after exposure 6 weeks. Growth rate and feed efficiency significantly decreased at concentration greater than 3.20 $\mu\textrm{g}$/L. Oxygen consumption rate was also decreased in a concentration-dependent way and significantly decreased to 17,48 and 67% than that of the control at the TBT concentration of 3.20, 6.32 and 12.50 $\mu\textrm{g}$/L, respectively. This study revealed that high TBT concentration ($\geq$3.20 $\mu\textrm{g}$/L) reduced growth and oxygen consumption rates of the juvenile oliver flounder suggesting potential influence on the natural mortality of Paralichthys olivaceus in the coastal areas.

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.233-239
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water. The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg O$_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg O$_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

  • PDF