• Title/Summary/Keyword: oxygen inducer

Search Result 37, Processing Time 0.026 seconds

Performance Test of a Turbo Pump Inducer (터보펌프 인듀서의 성능 실험)

  • Kang, Shin-Hyoung;Yeom, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.637-642
    • /
    • 2001
  • Performance and cavitation characteristics of a turbo pump inducer which is designed for oxygen pump is experimentally investigated. It is found that the static performance of inducer is dependent on the location of inlet pressure measurement and that enough distance from inducer is ensured for accurate evaluation of performance. With the increase of flow rate. NPSH tends to decrease as opposed to pump characteristics, which seems to be due to the cavitation region.

  • PDF

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bum-Seog;Park, Moo-Ryong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.250-257
    • /
    • 2001
  • Low NPSH and high pressure pumps are widely used for turbopump systems, which have an inducer and operate at high rotating speeds In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions and at design or off-design points. The method was applied for the performance prediction of a fuel pump, which had been developed by Hyundai Mobis in collaboration with KeRC for a liquid rocket engine. The engine uses liquid methane and liquid oxygen as working fluids and rotates at 50,000 rpm KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed (10,000 ${\~}$ 15,000 rpm). Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

  • PDF

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Oxidative Stress Resulting from Environmental Pollutions and Defence Mechanisms in Plants (환경오염(環境汚染)에 의한 산화(酸化)스트레스와 식물체(植物體)의 방어기작(防禦機作))

  • Shim, Sang-In;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.264-280
    • /
    • 1993
  • The environmental pollutions were a serious problem in Korea recently. So many researcher have studied the effect of environmental pollution on plants and agro-ecosystem, but the basic mechanisms of environmental stresses were various. One of the important mechanisms was oxidative stress caused by active toxic oxygen. The toxic oxygen was generated by several stresses, abnormal temperature, many xenobiotics, air pollutants, water stress, fugal toxin, etc. In the species of toxic oxygen which is primary inducer of oxidative stresses, superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen were representative species. The scavenging systems were divided into two groups. One was nonenzymatic system and the other enzymatic system. Antioxidants such as glutathione, ascorbic acid, and carotenoid, have the primary function in defense mechanisms. Enzymatic system divided into two groups; First, direct interaction with toxic oxygen(eg. superoxide dismutase). Second, participation in redox reaction to maintain the active antioxidant levels(eg. glutathione reductase, ascorbate peroxidase, etc.).

  • PDF

Anthocyanin Extracts from Black Soybean (Glycine max L.) Protect Human Glial Cells Against Oxygen-Glucose Deprivation by Promoting Autophagy

  • Kim, Yong-Kwan;Yoon, Hye-Hyeon;Lee, Young-Dae;Youn, Dong-Ye;Ha, Tae-Joung;Kim, Ho-Shik;Lee, Jeong-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Anthocyanins have received growing attention as dietary antioxidants for the prevention of oxidative damage. Astrocytes, which are specialized glial cells, exert numerous essential, complex functions in both healthy and diseased central nervous system (CNS) through a process known as reactive astrogilosis. Therefore, the maintenance of glial cell viability may be important because of its role as a key modulator of neuropathological events. The aim of this study was to investigate the effect of anthocyanin on the survival of glial cells exposed to oxidative stress. Our results demonstrated that anthocyanin extracts from black soybean increased survival of U87 glioma cells in a dose dependent manner upon oxygen-glucose deprivation (OGD), accompanied by decrease levels of reactive oxygen species (ROS). While treatment cells with anthocyanin extracts or OGD stress individually activated autophagy induction, the effect was signifi cantly augmented by pretreatment cells with anthocyanin extracts prior to OGD. The contribution of autophagy induction to the protective effects of anthocyanin was verifi ed by the observation that silencing the Atg5 expression, an essential regulator of autophagy induction, reversed the cytoprotective effect of anthocyanin extracts against OGD stress. Treatment of U87 cells with rapamycin, an autophagy inducer, increased cell survival upon OGD stress comparable to anthocyanin, indicating that autophagy functions as a survival mechanism against oxidative stress-induced cytotoxicity in glial cells. Our results, therefore, provide a rationale for the use of anthocyanin as a preventive agent for brain dysfunction caused by oxidative damage, such as a stroke.

Effect of Oxygen Radicals and Aeration on Carotenogenesis and Growth of Phaffia rhodozyma(Xanthophyllomyces dendrorhous)

  • An, Gil-Hwan;Chang, Keng-Wei;Johnson, Eric-A
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1996
  • Mn(II)+succinate decreased the carotenoid formation of the yeast Phaffia rhodozyma, probably by scavenging $O_2$. When duroquinone (DQ), an internal and external $O_2$ generator, was added to medium, P. rhodozyma produced more amount of carotenoids. The increased carotenoid production was destroyed by oxygen radical (OR) scavengers, ascorbate+Cu(II) and dimethylsulfoxide. When sub-lethal concentrations of $H_2O_2$ , an external OR source, and antimycin, an internal OR inducer, were used, the effect of $H_2O_2$ on carotenoid formation and composition was less significant than that of antimycin. Addition of superoxide dismutase, an external OR remover, rescued cells from death caused by the high concentration of DO. In this condition, the yeast culture showed an increase in carotenoid content. Addition of DQ into P. rhodozyma culture in the stationary phase did not increase carotenoid production. Therefore, carotenoid formation was stimulated by internal ORs in the growing yeast. It was probably due to release of catabolite repression on carotenogenesis in the yeast. Aeration was important for carotenoid production but was not as effective as the internal OR producer, DQ.

  • PDF

Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells

  • Jung, Euitaek;Koh, Dongsoo;Lim, Yoongho;Shin, Soon Young;Lee, Young Han
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.88-93
    • /
    • 2020
  • Cisplatin is a widely used anti-cancer agent. However, the effectiveness of cisplatin has been limited by the commonly developed drug resistance. This study aimed to investigate the potential effects of endoplasmic reticulum (ER) stress to overcome drug resistance using the cisplatin-resistant A2780/CisR ovarian cancer cell model. The synthetic chalcone derivative (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (named DPP23) is an ER stress inducer. We found that DPP23 triggered apoptosis in both parental cisplatin-sensitive A2780 and cisplatin-resistant A2780/CisR ovarian cancer cells due to activation of reactive oxygen species (ROS)-mediated unfolded protein response (UPR) pathway in the endoplasmic reticulum. This result suggests that ROS-mediated UPR activation is potential in overcoming drug resistance. DPP23 can be used as a target pharmacophore for the development of novel chemotherapeutic agents capable of overcoming drug resistance in cancer cells, particularly ovarian cancer cells.

Effects of Okbyungpoongsan Administration on Innate and Specific Immune Response in the Mouse (옥병풍산(玉屛風散)이 생쥐의 선천성 및 특이적 면역반응에 미치는 영향)

  • Song, Bong-Keun;Jeon, Yong-Cheol
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.177-186
    • /
    • 1999
  • Okbyungpoongsan(OBPS) has long been known to have anti-allergic effect. In order to evaluate the influence on innate and specific immune response, the effects of OBPS on vascular permeability. hypersensitivities and phagocytic functions were measured. As the results, OBPS increased phagocytic activity of peritoneal macrophages in vitro and in vivo. But OBPS depressed formation of reactive oxygen intermediates(ROI) in vitro and in vivo, while the drug enhanced generation macrophages. Foot pad swelling in the mouse and contact hypersensitivity against dinitroflouorobenzene were decreased. OBPS had no effect on NK cells. But OBPS decreased vascular permeability induced by histamine without statistical significance. These results demonstrate that OBPS suppresses hypersensitivity reactions without affecting phagocytic functions and formation of ROI from macrophages. It also means that OBPS acts as a effective inducer to synthesis of nitric oxide which is effective for the infectious disease while it does damage to tissue less as it suppresses ROI, So we can conclude that OBPS could be used for the treatment of the disease related with immune function.

  • PDF

Estrogen Induces CK2α Activation via Generation of Reactive Oxygen Species

  • Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • The protein kinase $CK2{\alpha}$ (formerly Casein Kinase II) is implicated in tumorigenesis and transformation. However, the mechanisms of $CK2{\alpha}$ activation in breast cancer have yet to be elucidated. This study investigated the mechanisms of $CK2{\alpha}$ activation in estrogen signaling. Estrogen increased reactive oxygen species (ROS) production, $CK2{\alpha}$ activity, and protein expression in estrogen receptor positive ($ER^+$) MCF-7 human breast cancer cells, which were inhibited by the antioxidant N-acetyl-L-cysteine. $H_2O_2$ enhanced $CK2{\alpha}$ activity and protein expression. Human epidermal growth factor (EGF) increased ROS production, $CK2{\alpha}$ activity and protein expression in EGF receptor 2 (HER2)-overexpressing MCF-7 (MCF-7 HER2) cells, but not in MCF-7 cells. Estrogen induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 inhibitor, SB202190, blocked estrogen-induced increases in ROS production, $CK2{\alpha}$ activity and $CK2{\alpha}$ protein expression. The data suggest that ROS/p38 MAPK is the key inducer of $CK2{\alpha}$ activation in response to estrogen or EGF.

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo;Park, Hyun-Jung;Son, Ho-Jung;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.880-887
    • /
    • 2017
  • We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.