• 제목/요약/키워드: oxygen evolution

검색결과 262건 처리시간 0.026초

분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구 (A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis)

  • 김인겸;나인욱;박세규
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.854-862
    • /
    • 2016
  • 최근 화석연료를 대체할 친환경 신재생에너지에 대한 요구가 증가하면서 수소에너지가 미래 대체에너지원으로서 주목받고 있다. 수소를 생산하는 방법 중 수전해 기술은 에너지효율과 안정성이 뛰어난 장점이 있지만, 산소발생반응시 발생하는 높은 과전압은 여전히 단점으로 지적되고 있다. 본 연구에서는 분무열분해 공정을 통하여 Co 전구체로부터 $Co_3O_4$를 제조하였다. 또한, urea, sucrose, citric acid의 유기물첨가제를 사용하여 다양한 입자 크기와 표면형상을 가지는 $Co_3O_4$를 제조하였고, 필요에 따라 추가로 열처리를 실시하였다. 합성한 $Co_3O_4$의 물리적 특성을 분석하기 위해 X-선 회절 분석(XRD)으로 결정성을 조사하였고, 주사전자현미경(SEM)과 투과전자현미경(TEM)으로 입자형상 및 표면을 분석하였다. 질소 흡 탈착 시험을 통해 촉매의 비표면적 및 기공부피를 측정하였고, 질소도핑을 확인하기 위해 X-선 광전자 분광법(XPS)을 사용하였다. 촉매의 산소발생반응 활성을 알아보기 위해 3전극 셀에서 선형주사전위법(LSV)으로 전기화학적 거동을 분석하였다. 첨가제를 사용하지 않은 $Co_3O_4$가 가장 우수한 활성을 보였고, 이는 분무열분해법을 통하여 상대적으로 작은 입자형성과 높은 비표면적의 영향인 것으로 판단된다.

Sol-Gel법을 이용한 CuxCo3-xO4 산소 발생 촉매의 합성 및 전기화학 특성 분석 (Electrochemical Analysis of CuxCo3-xO4 Catalyst for Oxygen Evolution Reaction Prepared by Sol-Gel Method)

  • 박유세;정창욱;김치호;구태우;석창규;권일영;김양도
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.92-96
    • /
    • 2019
  • Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as $IrO_2$ and $RuO_2$. In this study, the sol-gel method is used to synthesize the $Cu_xCo_{3-x}O_4$ catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from $250^{\circ}C$ to $400^{\circ}C$ for 4 h. The $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of $Cu_xCo_{3-x}O_4$ increases with an increase in calcination temperature. Amongst all the samples studied, $Cu_xCo_{3-x}O_4$, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at $10mA/cm^2$ is 438 mV. The tafel slope of $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the $Cu_xCo_{3-x}O_4$ catalyst.

{100} 단결정 수소화 티타네이트(H2Ti3O7)를 활용한 저함량 Irridium 수전해 양극 촉매 개발 (Low-iridium Doped Single-crystalline Hydrogenated Titanates (H2Ti3O7) with Large Exposed {100} Facets for Enhanced Oxygen Evolution Reaction under Acidic Conditions)

  • 정선영;한혁수
    • 마이크로전자및패키징학회지
    • /
    • 제30권1호
    • /
    • pp.79-89
    • /
    • 2023
  • 산성 조건에서의 산소 발생 반응(OER)의 효율 향상 및 안정적인 전기 촉매 개발은 양이온 교환 막 (PEM) 수전해 장치의 상용화를 위한 바람직한 목표다. 여기서 우리는 산성 OER에 대해 Ir 함량이 낮은 유망한 촉매로서 Ir이 도핑된 수소화 티타네이트 (Ir-HTO) 나노벨트를 보고한다. 크게 확인할 수 있는 {100}면이 있는 단결정 HTO 나노벨트에 낮은 함량의 Ir(~3.36 at %)을 추가하면 산성 조건에서 OER에 대한 촉매 활성과 안정성이 크게 향상된다. Ir-HTO는 상용적인 대조군 IrO2 촉매보다 성능이 뛰어나다. 10mA cm-2의 전류밀도에서 과전압은 Ir-HTO가 25% 감소했다. Ir-HTO 촉매 성능은 산성 OER에 대한 가장 효율적인 전기 촉매로서 자리 잡고 있다. 심층적인 전기화학적 특성화를 통해 Ir-HTO에 대해 개선된 고유한 촉매 활성 및 안정성도 확인되었다. 따라서, 우리의 실험결과는 낮은 함량의 Ir이 도핑된 단결정 HTO 나노벨트가 산성조건에서 효율적이고 내구성 있는 OER 촉매로 유망 될 수 있음을 보여준다.

Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동 (Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route)

  • 임주현;백경호
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.403-409
    • /
    • 2009
  • Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

THE PROCESS OF THE DEVELOPMENT OF HYPOXIA IN AN ABNORMAL BLOOD FLOW

  • Kwak, Min-Kyu;Shin, Byeong-Chun;Go, Jae-Gwi
    • 호남수학학술지
    • /
    • 제30권1호
    • /
    • pp.75-89
    • /
    • 2008
  • Interrupted blood flow diminishes the concentration of oxygen in tissues. Hypoxia first appears in the region distal to the capillaries and grows throughout the entire t issue. However, the time-wise evolution of hypoxic area is diverse when some of capillaries are blocked in a multi-capillary domain with different oxygen squirt. The process of the development of hypoxia through time course is analyzed mathematically in the domain. Each source in steady state is controlled by a time sensitive function to simulate the occlusion.

Selective Catalytic Etching of Graphene by SiOx Layer Depletion

  • 이경재;임규욱;양미현;강태희;정석민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2014
  • We report catalytic decomposition of few-layer graphene on an $Au/SiO_x/Si$ surface wherein oxygen is supplied by dissociation of the native $SiO_x$ layer at a relatively low temperature of $400^{\circ}C$. The detailed chemical evolution of the graphene covered $SiO_x/Si$ surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native $SiO_x$ layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a $SiO_x$ layer could realize a new way to micromanufacture high-quality electrical contact.

  • PDF

Inhibition of Rebar Corrosion by Carbonate and Molybdate Anions

  • Tan, Y.T.;Wijesinghe, S.L.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.167-174
    • /
    • 2017
  • Bicarbonate/carbonate and molybdate anions have been characterized for their inhibitive effect on pitting corrosion of carbon steel in simulated concrete pore solution by using electrochemical tests such as electrochemical impedance (EIS) and linear polarization (LP). It was revealed that bicarbonate/carbonate has a weak inhibitive effect on pitting corrosion that is approximately one order of magnitude lower compared to hydroxide. Molybdate is effective against pitting corrosion induced by the concentration of chloride as low as 113 mM and can increase the pitting potential of a previously pitted sample to the oxygen evolution potential by the concentration of molybdate as much as 14.6 mM only. The formation of a $CaMoO_4$ film on the surface hinders the reduction of dissolved oxygen on the steel surface, reducing corrosion potential and increasing the safety margin between corrosion potential and pitting potential further. In addition, pore-plugging by $FeMoO_4$ as a type of salt film within pits increases the likelihood of repassivation.

First Principles Study of spin polarization in Fe-doped monolayer C2N-h2D

  • Lee, Sang Yoon;Jeong, Geumbi
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.336-338
    • /
    • 2016
  • Recent multifunctional two-dimensional material research has triggered huge interests in various modifications for substitution of atoms. Instead of novel metals used as the most popular catalysts, nonprecious transition metals are promising candidates for efficient oxidation-reduction transfers. The recent discovery of $Co@C_2N$ has an alternate possiblity as catalysts for the ORR(Oxygen Reduction Reaction) in DSSc(Dye Sensitized Solar Cell) and OER(Oxygen evolution cobalt oxides). Here we report spin-polarized DFT calculations of the structure doped Iron that is one of ferromagnetism atoms like Co to provide a basic desciption of the ferromagnetism of the elemental metals. The spin-density-funtional results present the most stable state energetically is when having pairwise up/down spin.

  • PDF

THE CLASSIFICATION AND PHYSICS OF SUPERNOVAE

  • Wheeler, J. Craig
    • 천문학논총
    • /
    • 제8권1호
    • /
    • pp.169-177
    • /
    • 1993
  • Observed spectra of supernovae allow the empirical classification of supernovae into two basic categories, Type I with little or no evidence of hydrogen, and Type II with obvious evidence for hydrogen. The broad class of Type I can be subdivided depending on whether helium or silicon and other intermediate mass elements is observed. Understanding the physical processes that underlie these classifications---the progenitor evolution. the explosion mechanism, and end products---requires calculation of radiative transfer and model spectra. While most Type II occur in evolved massive stars that undergo core collapse. some may span the dividing line between degenerate and non-degenerate carbon burning and involve both core collapse and thermonuclear explosion. Type Ia are still most plausibly explained as thermonuclear explosions in carbon/oxygen white dwarfs in binary systems. Type Ib reveal helium atmospheres and are probably the result of core collapse in the helium core of a massive star that has lost its hydrogen envelope to a binary companion or to a wind. Type Ic supernovae are probably related to Type Ib but have also lost their helium envelope to reveal a mantle rich in oxygen.

  • PDF

Inactivation of Photosystem I in Cucumber Leaves Exposed to Paraquat-Induced Oxidative Stress

  • Park, Sun-Mi;Suh, Key-Hong;Kim, Jae-sung;Park, Youn-Il
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.13-17
    • /
    • 2001
  • Cucumber leaves subjected to light chilling stress exhibit a preferential inactivation of photosystem(PS) I relative to PSII, resulting in the photoinhibition of photosynthesis. In light chilled cucumber leaves, Cu/Zn-Superoxide dismutase(SOD) is regarded as a primary target of the light chilling stress and its inactivation is closely related to the increased production of reactive oxygen species. In the present study, we further explored that inactivation of PSI in cucumber leaves is not a light chilling specific, but general to various oxidative stresses. Oxidative stress in cucumber leaves was induced by treatment of methylviologen(MV), a producer of reactive oxygen species in chloroplasts. MV treatment decreased the maximal photosynthetic O$_2$ evolution, resulting in the photoinhibition of photosynthesis. The photoinhibition of photosynthesis was attributable to the decline in PSI functionality determined in vivo by monitoring absorption changes around 820 nm. In addition, MV treatment inactivated both antioxidant enzymes Cu-Zn-superoxide dismutase and ascorbate peroxidase known sensitive to reactive oxygen species. From these results, we suggest that chloroplast antioxidant enzymes are the primary targets of photooxidative stress, followed by subsequent inactivation of PSI.

  • PDF