• Title/Summary/Keyword: oxygen consumption

Search Result 745, Processing Time 0.025 seconds

Changes in the Concept of Nutrients and Transition of Plant Breeding (영양소의 변천과 식물육종의 추이)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.387-397
    • /
    • 2003
  • During the first half of twentieth century, even though the importance of non-calorie essential micronutrients of 13 vitamins and 17 minerals has been known to alleviate nutritional disorder; the primary objective of agriculture and plant breeding programs has been to increase the productivity and seed yields, and macronutrients of proteins, fats, and carbohydrates made up the bulk of foodstuff which were used primarily as an energy source. In the last decade it has been found that non-essential micronutrients encompass a vast group of phytochemicals including antioxidants that are not strictly required in the diet but when present at sufficient levels work as health-promoting chemicals. Nowadays agricultural crops are grown for health rather than for food or fiber, and modifying the nutritional compositions of plant foods has become an urgent health issue. To ensure an adequate intake of essential vitamins and minerals, and to increase the consumption of health-promoting phytochemicals, the researches on plant secondary metabolism have been made. The attempt to improve nutritional quality of crops has been blocked by a lack of basic knowledge of plant metabolism. The advent of genomics era enabled new approaches to make crossing regardless of species, family, or phylum barriers, and the accumulation in our basic knowledge on plant secondary metabolism during the coming decade would be tremendous. As the major staple crops contain insufficient amount of many micronutrients, fortification strategy will be a necessary practice. Elevated intake of specific vitamins, C, E, and $\beta$-carotene, mineral selenium, antioxidants, and phytochemicals significantly reduces the risk of chronic disease such as cancer, cardiovascular disorder, diabetis, and other degenerative disease associated with aging. As the attempt to improve the nutritional quality of crops requires the basic knowledges on plant metabolism, plant biochemistry, human physiology, and food chemistry, strong interdisplinary collaboration among plant biotechnologists, human nutritionists, and food scientists will be needed. Inhibition of cancer, cardiovascular disease, and other degenerative disorder may be the biggest goal facing nutritional plant breeders. But the assumption that simply increasing dietary level of any compound will necessarily improve human health is a dangerous idea because many plant secondary products and dietary contaminants have paradoxical (hermetic) effects. Before biotechnical manipulation is undertaken to elevate or reduce any individual constituent of crops, the contribution of the micronutrient to human health must first be investigated.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Validity on Submaximal Load Tests Using Cycle Ergometer in Evaluation of Maximum Oxygen Consumption Volume (최대 산소소모량 평가에 있어서 자전거 에르고미터를 이용한 최대하부하검사방법의 타당도)

  • Kang, Dongmug;Park, Yong Kyun;Lee, Yong Hwan;Sul, Jin Gon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • Because of the limitations of maximal load tests for $VO_2max$, submaximal tests using cycle ergometer are used for field study in general. This study was conducted to evaluate validity of various submaximal tests using cycle ergometer. This study had been conducted during May to June 2005, which subjects were 15 males and 15 females in twenties. Experiment was performed with restrictive conditions which regulated ambient temperature, noise, and entrance restriction. Submaximal load test protocols including YMCA Protocol (YP), ${\AA}strand$-Rhyming Protocol (ARP), Relative heart ratio Protocol (RP), and Ramp test Protocol (RP) were compared with maximal load test which used gas mask analyser using Bruce Protocol. All submaximal load tests were highly related with maximal load test (Spearman's correlation coefficient > 0.60) with statistical significancy. The highest correlation coefficient with maximal test was found in RP. Three submaximal test results except RP were significantly different with maximal test results (Wilcoxon rank test). All submaximal tests had high validity. The reason why RP had highest validity might be that it represents Korean physical strength and individual differences better than the others. RP using cycle ergometer would make easy to study for physical capacity evaluation and field workload estimation.

Three-Dimensional Water Quality Modeling of Chinhae Bay (진해만의 3차원 수질 모델링)

  • 김차겸;이필용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A three-dimensional hydrodynamic-ecosystem model was developed and applied to Chinhae Bay which is located in the southeastern sea of Korea. The model includes a three-dimensional hydrodynamic model and an eutrophication model, and the model operates on the same grid system. The agreement between predicted and measured results is reasonably encouraging. The concentrations of the calculated COD, DIN and DIP are appeared to be very high due to the phytoplankton production and the wastewater input in the northern part of Chinhae Bay. Anoxic and hypoxic water masses in the bottom layer occur in the northern part of the bay due to the excess loading of wastewater and strong stratification, and in the western inner part of the bay due to high oxygen consumption in densely populated aquaculturing facilities. DO concentration contours show parallel to the bay entrance line, which means the importance of supplying DO by physical process from the mouth of the bay. Although both the hydrodynamic and biochemical processes play important role to form the hypoxic waters in the bottom of the inner bay, it is suggested that the hydrodynamic conditions such as the vertical and the horizontal eddy diffusivity are primarily important factors.

  • PDF

A Study on the Combustion Characteristics of Pelletized and Fluff RDF (Refuse Derived Fuel) (성형 및 비성형 폐기물 고형연료의 연소특성에 관한 연구)

  • Sanjel, Nawaraj;Gu, Jae-Hoi;Kwon, Woo-Teck;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.333-338
    • /
    • 2012
  • To verify the utilization of fluff refuse derived fuel (RDF) as energy source, the combustion charateristic has been studied by an experimental combustion furnace under various temperatures. The characteristics of flue gas, dust and residue from fluff RDF combustion has been analyzed and compared with those of pelletized RDF. From this work, it was found that the incomplete combustion of fluff RDF was greater than that of pelletized RDF because the combustion reaction rate of fluff RDF was faster than that of pelletized RDF, and oxgen concentration in fluff RDF combustion decreased rapidly. It was also found that carbon monoxide concentration of flue gas from fluff RDF combustion increased with combustion temperature because the oxygen consumption and the incomplete combustion increased. Therefore, it is felt that the combustion operation conditions of fluff RDF should be carefully determined.

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.

Prediction of Heat of Combustion of Polymer Materials Using Combustion Characteristics (연소 특성치를 이용한 고분자재료의 연소열 예측)

  • Ha Dong-Myeong;Lee Su-Kyung
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.70-75
    • /
    • 2005
  • The heat of combustion of polymer materials is an important fire characteristics, which can be used with other fire parameter to predict the potential fire hazard in the polymer handling process. The aim of this study is to predict the heat of combustion for polymers which used in the building interior materials. By using the literature data and multiple regression, the new equation for predicting the heat of combustion of polymers is proposed. The A.A.p.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated heat of combustion by means of the oxygen consumption calorimeter and the stoichiometric coefficient were 4.46 and 1.09, and the correlation coefficient was 0.972. The values calculated by the proposed equations were in good agreement with the literature data. Therefore, it is expected that this proposed equations will support the use of the research for other polymer materials.

Physiological Responses of the Ark Shell Scapharca broughtonii (Bivalvia: Arcidae) to Decreases in Salinity

  • Shin, Yun-Kyung;Kim, Byung-Hak;Oh, Bong-Se;Jung, Choon-Goo;Sohn, Sang-Gyu;Lee, Jung-Sick
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.153-159
    • /
    • 2006
  • The ark shell (or 'blood clam') Scapharca broughtonii is a filter-feeding bivalve that has red blood and inhabits waters approximately 10m in depth off the southern coast of South Korea. This study was part of a larger research project investigating the causes of death and restoration of shellfish resources, which are important aquaculture products in South Korea. We examined physiological responses related to survival, respiration, excretion, and amino acid changes as a result of changes in salinity. The 9-day median lethal salinity ($LS_{50}$) was 16.5 psu with confidence limits of 14.9-18.1 psu. At $25^{\circ}C$, the oxygen consumption and ammonia-nitrogen excretion rates were increased with decreases in salinity. Although the osmolality of individuals was acclimated within 2 h at 26.4 psu and 12 h at 19.8 psu, it took more than 5 days at a salinity of 13.2 psu, whereas no individuals acclimated and all died at a salinity of 6.6 psu. Of the amino acids present in the blood, taurine and alanine increased in response to decreased salinity. Tissues of the gill and the mid-gut gland were affected by decreasing salinity. These data will provide important fundamental information for examining the causes of mass mortality of shellfish in the summer.

A Study on Wear Sensations of Tecel Fabrics in Hot Environments (서열환경 하에서의 텐셀소재 의복의 착용감 연구)

  • 권오경;송민규;이창미
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.3
    • /
    • pp.149-161
    • /
    • 2000
  • The purpose of the study was to examine the effect of Tencel fabrics on physiological reactions of a human body and thermal comfort under the hot environment. The 3 females subjects in their twenties were selected and a wear sensation test of the subjects was performed with four experimental ensembles made of cotton and Tencel fabrics for the study in the hot environment(3$0^{\circ}C$, 70%RH). The resets of the test were summarized as follows: For the mean skin temperature, Tencel garments showed about 0.2$^{\circ}C$-0.4$^{\circ}C$ lower than that of the cotton garment. The temperature of the rectal was 0.2$^{\circ}C$-0.4$^{\circ}C$ lower for Tencel garments than that for the colon garment. In the form of ensembles, the order of rectal temperature of the subjects for both Tencel and cotton ensembles was 1>IV>III>II. In the body weight loss according to garment materials, Tencel had a lower and more uniform than the cotton Thus, it could concluded that if the perspiration took into account, garments made of Tencel can be more ideal than that of the cotton. The heart rate and oxygen consumption appeared to be proportional to each other. For the heart rate, ensemble TI and TII of Tencel were much lower than ensemble CI and CII. For whole enembles except for TIV, Tencel ensembles showed relatively better thermal sensation and comfort sensation than the cotton ensembles. In the fatigue sensation, the reactions of the subjects were “slightly fatigue” and “fatigue” for the cotton, but “neutral” and “slightly fatigue” for Tencel.

  • PDF

Isolation and characterization of Vitreoscilla mutant defective in catalase-peroxidase hydroperoxidase I

  • Kim, Hee-Jung;Moon, Ja-Young;Lee, John-Hwa;Park, Kie-In
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.3
    • /
    • pp.291-304
    • /
    • 2007
  • Mutants of an obligate aerobic bacterium, Vitreoscilla, that have deficiency in heat-labile catalase-peroxidase hydroperoxidase I (HPI) were created by EMS treatment. The catalase-peroxidase HPI-deficient mutant showed substantially lower peroxidase activity in exponential and mid-stationary phase compared with the wild type strain. In late stationary phase, the mutant exhibited no peroxidase activity. Peroxidase deficiency in the mutant was revealed by polyacrylamide gels stained for peroxidase activity. Characteristically, catalase levels in the mutant increased about 14- and 8-fold during growth in the exponential and stationary phases, respectively, compared to those in the wild type, suggesting a compensatory effect for protection from $H_2O_2$ toxicity. The mutant showed differences in physiology from the wild type: retardation in growth rate and decrease in oxygen consumption. Both the wild type and the catalase-peroxidase HPI-deficient mutant of Vitreoscilla had lower growth rates in media containing increasing $H_2O_2$ concentrations. However, the mutant exhibited an additionally decreased growth rate after 6 to 8 h of growth compared to the wild type. The wild type was resistent up to 20 mM $H_2O_2$, whereas the mutant was very sensitive to high concentrations of exogenous $H_2O_2$. Although elevated catalase levels would provide protection of the bacteria from the deleterious effect of $H_2O_2$, it did not appear to be complete. Cell-free extracts of the mutant showed decreased NADH oxidation rates and higher accumulation of $H_2O_2$ during this oxidation. These results may account for the impaired growth and earlier onset of death phase by the catalase-peroxidase HPI-deficient mutant of Vitreoscilla.