Isolation and characterization of Vitreoscilla mutant defective in catalase-peroxidase hydroperoxidase I

  • Kim, Hee-Jung (Division of Biological Science, College of Natural Sciences, Chonbuk National University) ;
  • Moon, Ja-Young (Department of Biochemistry, College of Natural Sciences, Changwon National University) ;
  • Lee, John-Hwa (College of Veterinary Medicine, Chonbuk National University) ;
  • Park, Kie-In (Division of Biological Science, College of Natural Sciences, Chonbuk National University)
  • Published : 2007.09.30

Abstract

Mutants of an obligate aerobic bacterium, Vitreoscilla, that have deficiency in heat-labile catalase-peroxidase hydroperoxidase I (HPI) were created by EMS treatment. The catalase-peroxidase HPI-deficient mutant showed substantially lower peroxidase activity in exponential and mid-stationary phase compared with the wild type strain. In late stationary phase, the mutant exhibited no peroxidase activity. Peroxidase deficiency in the mutant was revealed by polyacrylamide gels stained for peroxidase activity. Characteristically, catalase levels in the mutant increased about 14- and 8-fold during growth in the exponential and stationary phases, respectively, compared to those in the wild type, suggesting a compensatory effect for protection from $H_2O_2$ toxicity. The mutant showed differences in physiology from the wild type: retardation in growth rate and decrease in oxygen consumption. Both the wild type and the catalase-peroxidase HPI-deficient mutant of Vitreoscilla had lower growth rates in media containing increasing $H_2O_2$ concentrations. However, the mutant exhibited an additionally decreased growth rate after 6 to 8 h of growth compared to the wild type. The wild type was resistent up to 20 mM $H_2O_2$, whereas the mutant was very sensitive to high concentrations of exogenous $H_2O_2$. Although elevated catalase levels would provide protection of the bacteria from the deleterious effect of $H_2O_2$, it did not appear to be complete. Cell-free extracts of the mutant showed decreased NADH oxidation rates and higher accumulation of $H_2O_2$ during this oxidation. These results may account for the impaired growth and earlier onset of death phase by the catalase-peroxidase HPI-deficient mutant of Vitreoscilla.

Keywords

References

  1. Hochman A, Shemesh A. 1987. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem 262. 6871-6876
  2. Levy E, Eyal Z, Hochman A. 1992. Purification and characterization of a catalase-peroxidase from the fungus Septoria tritici. Arch Biochem Biophys 296 : 321-327 https://doi.org/10.1016/0003-9861(92)90579-L
  3. Loewen PC, Switala J, Triggs-Raine BL. 1985. Catalases HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biphys 243 : 144-149 https://doi.org/10.1016/0003-9861(85)90782-9
  4. Loewen PC, Triggs BL, George CS, et al. 1985. Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase‒eroxidase hydro‒peroxidase I in Escherichia coli. J Bacteriol 162 : 661-667
  5. Triggs-Raine BL, Loewen PC. 1987. Physical characterization of Kat G encoding catalase HPI of Escherichia coli. Gene 52 : 121-128 https://doi.org/10.1016/0378-1119(87)90038-2
  6. Triggs-Raine BL, Doble BW, Mulvey MR, et al. 1988. Nucleotide sequence of KatG, encoding catalase HPI of Escherichia coli. J Bacteriol 170 : 4415-4419 https://doi.org/10.1128/jb.170.9.4415-4419.1988
  7. Christman MF, Storz G, Ames BN. 1989. Oxy R, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhi‒murium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci USA 86 : 3484-3488
  8. Von Ossowski I, Mulvey MR, Leco PA, et al. 1991. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol 173 : 514‒520
  9. Jenkins DE, Chaissons SA, Matin, A. 1990. Starvation-induced cross-protection against osmotic challenge in Escherichia coli. J Bacteriol 172 : 2779‒2781
  10. Wakabayashi S, Matsubara H, Webster DA. 1986. Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature 322 : 481-483 https://doi.org/10.1038/322481a0
  11. Orii Y, Webster DA. 1977. Oxygenated cytochrome o(Vitreoscilla) formed by treating oxidized cytochrome with superoxide anion. Plant Cell Physiol 18 : 521-526
  12. Abrams JJ, Webster DA. 1990. Purification, partial characterization, and possible role of catalase in the bacterium Vitreoscilla. Arch Biochem Biophys 279 : 54‒59
  13. Park C, Moon JY, Cokic P, et al. 1996. $Na^+$‒translocting cytochrome bo terminal oxidase from Vitreoscilla: Some parameters of its $Na^+$ pumping and orientation in synthetic vesicles. Biochemistry 35 : 19895-11900
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall R. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193 : 265-275
  15. Decker LA. 1988. Worthington enzyme manual. Worthington Biochemical Corporation. USA : 254-260
  16. Aebi H. 1974. Catalase. In : Methods of Enzymatic Analysis, Vol. 2. Academic Press. New York : 673-684
  17. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680-685 https://doi.org/10.1038/227680a0
  18. Wayne LG, Diaz GA. 1986. A double staining method for differentiating between two classes of mycobac‒terial catalase in polyacrylamide electrophoresis gels. Anal Biochem 157 : 89‒92
  19. Keston AS, Brandt R. 1965. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11 : 1-5 https://doi.org/10.1016/0003-2697(65)90034-5
  20. Mongkolsuk S, Loprasert S, Vatta‒naviboon P, et al. 1996. Heterologous growth phase- and temperature-deficient expression and $H_2O_2$ toxicity protection of a superoxide-inducible monofunctional catalase gene from Xanthomonas oryzae pv. oryzae. J Bacteriol 178 : 3578‒3584
  21. Heather RP, Mark RO. 2004. KatG is the primary detoxifier of hydrogen peroxide produced by aerobic metabolism in Bradyrhizobium japonicum. J Bacteriol 186 : 7874-7880 https://doi.org/10.1128/JB.186.23.7874-7880.2004
  22. Boerman SJ, Webster DA. 1982. Control of heme content in Vitreoscilla by oxygen. J Gen Appl Microbial 28 : 35-43 https://doi.org/10.2323/jgam.28.35
  23. Jakob W, Webster DA, Peter MHK. 1992. NADH-dependent methemoglobin reductase from the obligate aerobe Vitreoscilla: Improved method of purification and reexamination of prosthetic groups. Arch Biochem Biophys 292 : 29-33 https://doi.org/10.1016/0003-9861(92)90046-Y
  24. Dunford HB, Stillman JS. 1976. On the function and mechanism of action of peroxidase. Coord Chem Rev 19 : 187‒251
  25. Lange R, Hengge-Aronis R. 1991. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5 : 49-59 https://doi.org/10.1111/j.1365-2958.1991.tb01825.x