• 제목/요약/키워드: oxygen barrier

검색결과 328건 처리시간 0.029초

NH3분위기에서 Ti 질화에 의한 TiN 형성 (Formation of TiN by Ti Nitridation in NH3Ambient)

  • 이근우;박수진;유정주;권영호;김주연;전형탁;배규식
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.150-155
    • /
    • 2004
  • This study attempts to form a TiN barrier layer against Cu diffusion by the easier and more convenient method. In this new approach, Ti was sputter-deposited, and nitrided by heat-treating in the NH$_3$ambient. Sheet resistance of as-deposited Ti was 20 Ω/$\square$, but increased to 195 Ω/$\square$ after the heat-treatment at 30$0^{\circ}C$, and lowered to 120 Ω/$\square$ after the heat-treatment at 50$0^{\circ}C$, and $600^{\circ}C$. AES results for these thin films confirmed that the atomic ratio of Ti and N was close to 1:1 at or above 40$0^{\circ}C$ heat-treatment. However, it was also found that excessive oxygen was contained in the TiN layer. To examine the barrier property against Cu diffusion, 100nm Cu was deposited on the TiN layer and then annealed at 40$0^{\circ}C$ for 40 min.. Cu remained at the surface without diffusing into the Si layer.

Ti 쇼트키 배리어 다이오드의 Al 확산 방지를 위한 SC-1 세정 효과 (Effect of SC-1 Cleaning to Prevent Al Diffusion for Ti Schottky Barrier Diode)

  • 최진석;최여진;안성진
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.97-100
    • /
    • 2021
  • We report the effect of Standard Clean-1 (SC-1) cleaning to remove residual Ti layers after silicidation to prevent Al diffusion into Si wafer for Ti Schottky barrier diodes (Ti-SBD). Regardless of SC-1 cleaning, the presence of oxygen atoms is confirmed by Auger electron spectroscopy (AES) depth profile analysis between Al and Ti-silicide layers. Al atoms at the interface of Ti-silicide and Si wafer are detected, when the SC-1 cleaning is not conducted after rapid thermal annealing. On the other hand, Al atoms are not found at the interface of Ti-SBD after executing SC-1 cleaning. Al diffusion into the interface between Ti-silicide and Si wafer may be caused by thermal stress at the Ti-silicide layer. The difference of the thermal expansion coefficients of Ti and Ti-silicide gives rise to thermal stress at the interface during the Al layer deposition and sintering processes. Although a longer sintering time is conducted for Ti-SBD, the Al atoms do not diffuse into the surface of the Si wafer. Therefore, the removal of the Ti layer by the SC-1 cleaning can prevent Al diffusion for Ti-SBD.

Effect of thickness on moisture barrier properties of aluminum oxide using ozone-based atomic layer deposition

  • ;;;;;;;전형탁
    • Journal of Ceramic Processing Research
    • /
    • 제22권3호
    • /
    • pp.253-257
    • /
    • 2021
  • Among various thin film encapsulation (TFE) methods, thin films prepared by atomic layer deposition (ALD) have been shown to provide superior protection against the permeation of moisture and oxygen. This technique has numerous of advantages such as excellent uniformity, precise thickness control, and strong adhesion. Therefore, with ozone-based ALD, we conducted the influence of the thickness of aluminum oxide (Al2O3) on moisture barrier properties. From the results of an electrical calcium test, Al2O3 had two distinctly different permeation regimes. Between 10 and 25 nm of Al2O3 thickness, the water vapor transmission rate (WVTR) decreased exponentially from 6.3 × 10-3 to 1.0 × 10-4 g m-2 day-1 (1/60 times). In contrast, as thickness increased from 25 to 100 nm, the WVTR values decreased by only two-thirds, from 1.0 × 10-4 to 6.6 × 10-5 g·m-2·day-1. To better understand the change from an exponential to a sub-exponential regime, defect density and refractive index of Al2O3 were measured. The thickness dependence on defect density and refractive index was analogous with one of moisture barrier performance. These results confirmed the existence of a critical thickness at which the WVTR decreased drastically.

Multifunctional Indium Tin Oxide Thin Films

  • 장진녕;윤장원;이승준;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.186-186
    • /
    • 2015
  • We have introduced multifunctional ITO single thin films formed by normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions. MFSS ITO also possesses high gas diffusion barrier properties simultaneously low resistivity even it deposited at room temperature without post annealing on plastic substrate. Nano-crystalline enhancement by Ar energy has energy window from 20 to 30 eV under blocking NOI condition. Effect of blocking NOI and optimal Ar energy window enhancement facilitate that resistivity is minimized to $3.61{\times}10^{-4}{\Omega}cm$ and the WVTR of 100 nm thick MFSS ITO is $3.9{\times}10^{-3}g/(m^2day)$ which is measured under environmental conditions of 90% relative humidity and 50oC that corresponds to a value of ${\sim}10^{-5}g/(m^2day)$ at room temperature. The multifunctional MFSS ITO with low resistivity, and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF

Analysis of reactive species in water activated by plasma and application to seed germination

  • Choi, Ki-Hong;Lee, Han-Ju;Park, Gyungsoon;Choi, Eun-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.162.1-162.1
    • /
    • 2015
  • The use of plasma has increased in bio-application field in recent years. Particularly, water treated by arc discharge or atmospheric pressure plasma has been actively utilized in bio-industry. In this study, we have developed a plasma activated water generating system. For this system, two kinds of plasma sources; dielectric barrier discharge (DBD) plasma and arc discharge plasma have been used. The discharge energy was calculated using the breakdown voltage and current, and the emission spectrum was measured to investigate the generated reactive species. We also analyzed the amount of reactive oxygen and nitrogen species in water using the chemical methods and nitric oxide sensor. Finally, the influence of plasma generated reactive species on the germination and growth of spinach (Spinacia oleracea) was investigated. Spinach is a green leafy vegetable that contains a large amount of various physiologically active organic compounds. However, it is characterized with a low seed germination rate.

  • PDF

Application of Nanotechnology in Food Packaging

  • Rhim, Jong-Whan
    • 한국포장학회지
    • /
    • 제13권1호
    • /
    • pp.9-18
    • /
    • 2007
  • Nanocomposite has been considered as an emerging technology in developing a novel food packaging materials. Polymer nanocomposites exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased barrier properties pertaining to gases such as oxygen, carbon dioxide, and water vapor, as well as to UV rays, and increased mechanical properties such as strength, stiffness, dimensional stability, and heat resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. New packaging materials created with this technology demonstrate an increased shelf life with maintaining high quality of the product. Nanotechnology offers big benefits for packaging. Nanocomposite technology paves the way for packaging innovation in the flexible and rigid packaging applications, offering enhanced properties such as greater barrier protection, increased shelf life and lighter-weight materials.

  • PDF

구리 금속선의 산화 방지를 위한 알루미늄 박막의 산화 방지 특성 (Characteristics of the aluminum thisn films for the prevention of copper oxidation)

  • 이경일;민경익;주승기;라관구;김우식
    • 전자공학회논문지A
    • /
    • 제31A권10호
    • /
    • pp.108-113
    • /
    • 1994
  • The characteristics of the oxidation prevention layers for the copper metallization were investigated. The thin films such as Cr, TiN and Al were used as the oxidation prevention layers for copper. Ultra thin aluminum films were found to prevent the oxidation of copper up to the highest oxidation annealing temperature among the barrier layers examined in this study. It was found that oxygen did not diffuse into copper through aluminum films because of the aluminum oxide layer formed on the aluminum surface and the ultra thin aluminum film could be a good oxidation barrier layer for the copper metallization.

  • PDF

플라즈마 프로세스 및 촉매 표면화학반응에 의한 유기화합물 분해효율 향상에 대한 연구 (A Study on the Improvement of Decomposition Efficiency of Organic Substances Using Plasma Process and Catalytic Surface Chemical Reaction)

  • 한상보
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.932-938
    • /
    • 2010
  • This paper proposed the effective treatment method for organic substances using the barrier discharge plasma process and catalytic chemical reaction followed from ozone decomposition. The decomposition by the plasma process of organic substances such as trichloroethylene, methyl alcohol, acetone, and dichloromethane carried out, and ozone is generated effectively at the same time. By passing through catalysts, ozone easily decomposed and further decomposed organic substances. And, 2-dimensional distribution of ozone using the optical measurement method is performed to identify the catalytic surface chemical reaction. In addition, CO is easily oxidized into $CO_2$ by this chemical reaction, which might be induced oxygen atom radicals formed at the surface of catalyst from ozone decomposition.

Photochemical Transformation of Chalcone Derivatives

  • Shin, Dong-Myung;Song, Dong-Mee;Jung, Kyoung-Hoon;Moon, Ji-Hye
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.9-12
    • /
    • 2001
  • The photoisomerization behavior of benzylideneacetophenones, known as chalcones, was studied. We synthesized the chalcone derivatives that have ether groups at 4 and 4' positions. Due to the electron donating ability of the ether oxygen, the bond order of the single bond between two phenyl ring of the chalcone strengthened, which eventually increased the rotational barrier of the single bond. The rotational barrier of the single bond is about 20-22 kcal/mole. Thermal recovery of this process took about 1 min. The UV-visible spectra of these chromophores exhibit two characteristic absorption peaks at 276 nm and 340 nm. The relative intensity of the peaks varies depending on the alkyl chain length of the substituent. Photo-irradiation with the 365 nm light monotonously decreases the 340 nm peak. However, the photo-irradiation with 254 nm light induce two competing processes and produced rather complicated absorption profile.

  • PDF

TBC/CoNiCrAlY 용사코팅의 열싸이클 특성 (Thermal cyclic characteristics of TBC/CoNiCrAlY thermal barrier coatings)

  • 김의현;유근봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.45-47
    • /
    • 2006
  • The rotating components in the hot sections of land-based gas turbine are exposed to severe environments during several tens thousand operation hours at above $1100^{\circ}C$ operation temperature. To protect such components from high temperature oxidation, an intermediate bond coat is applied, typical of a MCrAlY-type metal alloy. This study is concerned with the thermal cyclic behavior of thermal barrier coatings. The MCrAlY bond coatings are deposited by HVOF (High Velocity Oxygen Fuel) method on a nickel-based superalloy (GTD-111). Thermal cyclic tests at $1100^{\circ}C$ in ambient air for various periods of time were used to evaluate the thermal cyclic resistance of the TBC coating. The microstructure and morphology of as-sprayed and of thermal cycled coatings were characterized by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).

  • PDF