• 제목/요약/키워드: oxidized LDL

검색결과 93건 처리시간 0.03초

자생식물 추출물의 Lipoprotein-Associated Phospholipase $A_2$, Platelet-Activating Factor Acetylhydrolase 저해활성 (Inhibitory Effects of Natural Plant Extracts on Lipoprotein-Associated Phospholipase $A_2$, Platelet-Activating Factor Acetylhydrolase)

  • 유하나;조경현;석대은;정태숙
    • 생약학회지
    • /
    • 제34권1호통권132호
    • /
    • pp.100-108
    • /
    • 2003
  • The regulation of plasma lipid level, particularly LDL cholesterol, represents the focus of current therapy for atherosclerosis. And $Lp-PLA_2$ is able to hydrolyse oxidized phosphatidylcholine within LDL into lyso-PC and oxidized fatty acids. $Lp-PLA_2$ is a potential biomarker of coronary heart disease and plays an important proinflammatory role in the progression of atherosclerosis. We investigated the inhibitory effects of methanol extracts of 224 natural plants on $Lp-PLA_2$ activity. Seven kinds of methanol extracts of tested plants showed above 50% inhibitory effect with the concentration of $100\;{\mu}g/ml$. The concentrated aqueous suspensions of each methanol extract were partitioned with n-hexane, $CHCl_3$, and EtOAc. Among them, EtOAc extracts of Astilbe chinensis var. davidii (root) and Pourthiaea villosa var. brunnea (leaf) significantly inhibited $Lp-PLA_2$ activity at the same concentration.

Anti-aging Activity of Aralia Cordata Thunb. by Inhibiting Oxidized Low-dencity Lipoprotein Production in Rats

  • Hyun, Min-Kyung;Jeong, Ji-Cheon
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1576-1580
    • /
    • 2007
  • Aralia cordata Thunb. (Araliaceae, ACT) is an remarkable herbal plant that has been widely used in traditional oriental medicine for the treatment of inflammatory diseases and cardiovascular disorders. In this study, we have established a vascular aging model in rats by orally administrating excessive vitamin $D_2$ (500,000 IU/kg/day) for 4 days followed by feeding high cholesterol diet for 16 weeks and then rats were randomly divided into control group, high cholesterol diet (HCD) group, HCD+ACT (30 mg/kg) and HCD+ACT (60 mg/kg) group. ACT (30, 60) significantly reduced total cholesterol (TC) content compared with HCD, but no significant differences in the serum lipids. Secondly, we measured the serum levels of Oxidized Low-dencity Lipoprotein (OxLDL) and malondialdehyde (MDA) in order to further investigate the anti-vascular aging mechanism of ACT. The results, ACT (30, 60) treatments decreased OxLDL, MDA content and increased Cu/Zn superoxide dismutase activity compared with HCD treatments. The results suggested that ACT inhibited OxLDL production rather than serum lipids lowering and that ACT could be used as potential anti-atherosclerotic agent in aged cells.

대식세포(大食細胞) oxLDL 생성(生成)에 미치는 독활기생탕(獨活寄生湯)의 영향(影響) (Effects of Tokhwalkisaengtang on LDL Oxidation in Macrophage Cell)

  • 황귀서;송지연
    • 대한예방한의학회지
    • /
    • 제4권2호
    • /
    • pp.205-213
    • /
    • 2000
  • The oxidative modification of low density lipoprotein(LDL) has been implicated in the development of atherosclerosis . Oxidized LDL(oxLDL) are found in macrophage foam cell , and it can induce an macrophage proliferation in atherosclerotic plaque. In this study, we investigated the hypothesis that Tokhwalkisaengtang(TK) may reduce atherosclerosis by lowering the oxidizability of LDL, To achieve this goal, we examined the effect of TK on LDL oxidation, nitric oxide production in murine macrophage cell line , and the effect of TK on cupuric sulfate-induced cytotoxicity. LDH release, and macrophage activity TK inhibited the generation of oxLDL from native LDL in macrophage cell culture, and decreased the release of LDH from cupric sulfate-stimulated macrophage. In other experiments, TK activated macrophase cell, and increased the survival rate, and enhanced nitric oxide production in macrophage.

  • PDF

Oxidized Low-density Lipoprotein- and Lysophosphatidylcholine-induced $Ca^{2+}$ Mobilization in Human Endothelial Cells

  • Kim, Moon-Young;Liang, Guo-Hua;Kim, Ji-Aee;Choi, Soo-Seung;Choi, Shin-Ku;Suh, Suk-Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.27-32
    • /
    • 2009
  • The effects of oxidized low-density lipoprotein(OxLDL) and its major lipid constituent lysophosphatidylcholine(LPC) on $Ca^{2+}$ entry were investigated in cultured human umbilical endothelial cells(HUVECs) using fura-2 fluorescence and patch-clamp methods. OxLDL or LPC increased intracellular $Ca^{2+}$ concentration($[Ca^{2+}]_i$), and the increase of $[Ca^{2+}]_i$ by OxLDL or by LPC was inhibited by $La^{3+}$ or heparin. LPC failed to increase $[Ca^{2+}]_i$ in the presence of an antioxidant tempol. In addition, store-operated $Ca^{2+}$ entry(SOC), which was evoked by intracellular $Ca^{2+}$ store depletion in $Ca^{2+}$-free solution using the sarcoplasmic reticulum $Ca^{2+}$ pump blocker, 2, 5-di-t-butyl-l,4-benzohydroquinone(BHQ), was further enhanced by OxLDL or by LPC. Increased SOC by OxLDL or by LPC was inhibited by U73122. In voltage-clamped cells, OxLDL or LPC increased $[Ca^{2+}]_i$ and simultaneously activated non-selective cation(NSC) currents. LPC-induced NSC currents were inhibited by 2-APB, $La^{3+}$ or U73122, and NSC currents were not activated by LPC in the presence of tempol. Furthermore, in voltage-clamped HUVECs, OxLDL enhanced SOC and evoked outward currents simultaneously. Clamping intracellular $Ca^{2+}$ to 1 ${\mu}M$ activated large-conductance $Ca^{2+}$-activated $K^+(BK_{ca})$ current spontaneously, and this activated $BK_{ca}$ current was further enhanced by OxLDL or by LPC. From these results, we concluded that OxLDL or its main component LPC activates $Ca^{2+}$-permeable $Ca^{2+}$-activated NSC current and $BK_{ca}$ current simultaneously, thereby increasing SOC.

Recombinant Human Thioredoxin-1 Protects Macrophages from Oxidized Low-Density Lipoprotein-Induced Foam Cell Formation and Cell Apoptosis

  • Zhang, Hui;Liu, Qi;Lin, Jia-Le;Wang, Yu;Zhang, Ruo-Xi;Hou, Jing-Bo;Yu, Bo
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.121-129
    • /
    • 2018
  • Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and apoptosis play critical roles in the pathogenesis of atherosclerosis. Thioredoxin-1 (Trx) is an antioxidant that potently protects various cells from oxidative stress-induced cell death. However, the protective effect of Trx on ox-LDL-induced macrophage foam cell formation and apoptosis has not been studied. This study aims to investigate the effect of recombinant human Trx (rhTrx) on ox-LDL-stimulated RAW264.7 macrophages and elucidate the possible mechanisms. RhTrx significantly inhibited ox-LDL-induced cholesterol accumulation and apoptosis in RAW264.7 macrophages. RhTrx also suppressed the ox-LDL-induced overproduction of lectin-like oxidized LDL receptor (LOX-1), Bax and activated caspase-3, but it increased the expression of Bcl-2. In addition, rhTrx markedly inhibited the ox-LDL-induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38 mitogen-activated protein kinases (MAPK). Furthermore, anisomycin (a p38 MAPK activator) abolished the protective effect of rhTrx on ox-LDL-stimulated RAW264.7 cells, and SB203580 (a p38 MAPK inhibitor) exerted a similar effect as rhTrx. Collectively, these findings indicate that rhTrx suppresses ox-LDL-stimulated foam cell formation and macrophage apoptosis by inhibiting ROS generation, p38 MAPK activation and LOX-1 expression. Therefore, we propose that rhTrx has therapeutic potential in the prevention and treatment of atherosclerosis.

엉겅퀴로부터 분리한 Silymarin 및 Silybin이 Macrophages에 의한 사람 Low Density Lipoprotein의 산화에 대한 항산화 효과

  • 이백천;정영기;류병호
    • 한국미생물·생명공학회지
    • /
    • 제25권3호
    • /
    • pp.286-292
    • /
    • 1997
  • This study was undertaken to evaluate an antioxidative activity of silymarin and silybin obtained from Silybum marianum against oxidation of human low density lipoprotein (LDL). The electrophoretic mobility observed apparently was higher phase for LDL oxidized by macrophages compared to native LDL. Silymarin and silybin inhibited the copper-catalysed oxidation of human LDL in a dose-dependent manner. Silymarin and silybin at the concentration of 50 $\mu$M/ml also inhibited the copper catalysed oxidation of LDL induced by the cell J774 and macrophages. LDL reisolated from the cell incubation in the presence of silymarin or silybin was degraded at rates similar with native LDL. Silymarin or silybin found to be potential inhibitors against oxidation of $^{125}$I-LDL by macrophages and endothelial cells.

  • PDF

산화 저비중 리포 단백이 호산구와 호중구에 대한 화학주성 (Oxidized LDL is a Chemoattractant for the Eosinophils and Neutrophils)

  • 황영실;이종덕
    • Tuberculosis and Respiratory Diseases
    • /
    • 제51권3호
    • /
    • pp.211-223
    • /
    • 2001
  • 연구배경 : 기관지에 리노 바이러스(rhinovirus) 감염은 기관지혈관 내피세포의 투과성을 증가시켜 저비중리포단백(LDL) 같은 혈장단백의 유입을 초래한다. 그런데 산화 저비중리포단백(oxidized LDL)은 단핵세포 대식식세포에서 IL-1, GM-CSF 분비를 유발하고 화학주성과 또한 CD11b/CD18 intergrin을 증가시키며 L-selectin 표현을 감소시킨다. 이러한 소견들은 산화 저비중리포단백이 proimflammatory 효과를 가진다는 것을 시사한다. 연구자들은 산화 저비중리포단백이 리노바이러스 감염시 기도에 과립구를 동원할것이라는 가설하에 산화 저비중리포단백에 의한 호중구와 호산구의 화학주성과 내피세포이동(transendothelial migration)에 대하여 연구하였다. 방 법 : 저비중리포단백을 20-24시간 동안 5mM $CU_2SO_4$로 산화 시키고 conjugated diens 형성 방법으로 234nm에서 산화 정도를 확인하였다. 과립세포들의 화학주성측정은 $3-5{\times}10_5$ 세포들을 transwell 필터에 놓고 $37^{\circ}C$, 5% $CO_2$ 1시간 항온배양후 이동한 세포들을 혈구계로 계산하였다. 과립세포들의 내피세포이동은 인체 미세폐혈관 내피세포(human pulmonary microvascular endothelial cell) 들을 transwell 필터에 배양후 호산구와 호중구를 화학주성물질과 함께 놓은 후 3시간 항온 배양후 이동한 세포들을 혈구계로 계산하였다. 결 과 : 산화 저비중리포단백은 호산구와 호중구에 화학주성이있고 화학주성정도는 저비중리포단백의 농도와 산화 정도에 비례하였다. 또한 산화 저비중리포단백은 과립구의 인체 미세폐혈관 내피세포이동을 농도에 비례히여 자극하였고 호중구가 호산구보다 낮은 농도의 산화 저비중리포단백에 예민하게 반응하였다. 결 론 : 리노바이러스 감염으로 혈관투과정 증가로 저비중리포단백의 유입과 산화를 유발하고 이 산화 저비중리포단백이 기관지 간질세포에 호중구와 호산구이동을 유발하는 한 기전이며 또한 이과립구들이 산화 저비중단백과 함께 기도 염증을 초래할 것으로 사료된다.

  • PDF

사람 LDL의 지질과산화에 의한 geraniin의 항산화 효과 (Antioxidative Role of Geraniin in Lipid Peroxidation of Human LDL)

  • Ho, Ryu-Beung
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.180-187
    • /
    • 2004
  • 본 연구는 동맥 경화의 원인으로 알려진 사람 oxidized low density lipoprotein (LDL)에 대한 geraniin의 산화 억제 효과에 대하여 실험하였다. 사람 LDL을 C $u^{2+}$유도 LDL로 산화 시킬 때 50와 100 $\mu\textrm{g}$/ml 농도의 geraniin를 첨가하여 TBARS을 측정한 결과 LDL에 대한 항산화가 높았으며 용량 의존형으로 나타났다. Geraniin를 20-100 $\mu\textrm{g}$/ml의 농도를 조절하여 전기 영동에 의한 이동상을 조사한 결과 100 $\mu\textrm{g}$/ml geraniin의 농도에서 거의 완전한 억제 효과를 보였다. 사람 LDL에 C $u^{2+}$로 유도하여 LDL를 산화시킬때 conjugated diene를 보면 geraniin를 100 $\mu\textrm{g}$/ml 첨가하였을 때 억제 효과가 높았다. 또한 geraniin은 동맥의 내피세포에 서도 그 농도에 따라 억제효과를 나타내었다. 그리고 phorbol myristate acetate를 처리한 macrophage 유도활성 산소의 소거 효과는 geraniin의 농도가 100 $\mu\textrm{g}$/ml일때 거의 소거하였다. 이상의 결과로 보아 geraniin는 $\alpha$-tocopherol, ascorbir acid 및 합성 항산화제인 probucol과 거의 비슷한 항산화 활성이 있어 동맥 경화의 예방에 효과적이라는 결론을 얻었다.

Aspergillus oryzae A-5로부터 Low Density Lipoprotein(LDL)의 산화에 대한 항산화 효과 (Antioxidant Activity of Aspergillus oryzae A-5 on Oxidation of Low Density Lipoprotein)

  • 류병호;김동석;조경자;이홍수;진성현
    • 생명과학회지
    • /
    • 제7권4호
    • /
    • pp.289-296
    • /
    • 1997
  • Antioxidative activity of fraction extracted from cultivation of Aspergillus sp. A-5 against oxidation of human low density lipoprotein(LDL) was investigated. Fractions of Aspergillus sp. A-5 cultivation was sucessively purified with ethyl acetate and silica gel column chromatography. The concentration of fraction 4 inhibited Cu$^{2+}$-induced oxidation of LDL almost completely. Band 3 isolated by the further purification of fraction 4 was higher than that of same concentration of $\alpha$-tocopherol, BHA and BHT. The elcetrophoretic mobility of oxidized LDL by addition of Band 3 was faster than that of native LDL, but slower than that of oxidzed LDL. It is concluded that fraction of Aspergillus cultivation contained antioxidants with the capacity to inhibit oxidative modification of LDL.

  • PDF

Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways

  • Lu, Shan;Luo, Yun;Zhou, Ping;Yang, Ke;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.95-104
    • /
    • 2019
  • Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-${\alpha}$, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (${\Delta}{\Psi}m$) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor $(NF)-{\kappa}B$, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, $NF-{\kappa}B$ nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the $NF-{\kappa}B$, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.