• Title/Summary/Keyword: oxides

Search Result 2,626, Processing Time 0.026 seconds

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

Nano-mechanical Properties of Nanocrystal of HfO2 Thin Films for Various Oxygen Gas Flows and Annealing Temperatures (RF Sputtering의 증착 조건에 따른 HfO2 박막의 Nanocrystal에 의한 Nano-Mechanics 특성 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kwon, Ku-Eun;Kim, Min-Suk;Eum, Seoung-Hyun;Jung, Hyun-Jean;Jo, Yong-Seok;Park, Seung-Ho;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.273-278
    • /
    • 2012
  • Over the last decade, the hafnium-based gate dielectric materials have been studied for many application fields. Because these materials had excellent behaviors for suppressing the quantum-mechanical tunneling through the thinner dielectric layer with higher dielectric constant (high-K) than $SiO_2$ gate oxides. Although high-K materials compensated the deterioration of electrical properties for decreasing the thickness of dielectric layer in MOSFET structure, their nano-mechanical properties of $HfO_2$ thin film features were hardly known. Thus, we examined nano-mechanical properties of the Hafnium oxide ($HfO_2$) thin film in order to optimize the gate dielectric layer. The $HfO_2$ thin films were deposited by rf magnetron sputter using hafnium (99.99%) target according to various oxygen gas flows. After deposition, the $HfO_2$ thin films were annealed after annealing at $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for 20 min in nitrogen ambient. From the results, the current density of $HfO_2$ thin film for 8 sccm oxygen gas flow became better performance with increasing annealing temperature. The nano-indenter and Weibull distribution were measured by a quantitative calculation of the thin film stress. The $HfO_2$ thin film after annealing at $400^{\circ}C$ had tensile stress. However, the $HfO_2$ thin film with increasing the annealing temperature up to $800^{\circ}C$ had changed compressive stress. This could be due to the nanocrystal of the $HfO_2$ thin film. In particular, the $HfO_2$ thin film after annealing at $400^{\circ}C$ had lower tensile stress, such as 5.35 GPa for the oxygen gas flow of 4 sccm and 5.54 GPa for the oxygen gas flow of 8 sccm. While the $HfO_2$ thin film after annealing at $800^{\circ}C$ had increased the stress value, such as 9.09 GPa for the oxygen gas flow of 4 sccm and 8.17 GPa for the oxygen gas flow of 8 sccm. From these results, the temperature dependence of stress state of $HfO_2$ thin films were understood.

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

Aquaporin in bleomycin induced lung injury (급성 폐손상 동물모델에서 aquaporin 수분통로의 발현)

  • Jang, An-Soo;Park, Jong-Sook;Lee, June-Hyuk;Park, Sung-Woo;Kim, Do-Jin;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Background : Aquaporins (AQPs) may play a role in the pathogenesis of pulmonary inflammation and edema. This study investigated the role ofAQPs in acute lung injury following bleomycin inhalation in rats. Methods : Sprague-Dawley rats were treated via inhalation with 10 U/kg bleomycin hydrochloride dissolved in 5 ml of normal saline. The control rats were treated with 5 ml normal saline. The animals (n = 6-8 rats per group) were sacrificed at 4, 7, and 14 d. The changes in AQP1, AQP4, and AQP5 expression levels over time were analyzed by Western blotting. The nitrate and nitrite concentrations in the bronchoalveolar lavage fluid (BALF) were measured using a modified Griess reaction. ELISA was used to check cytokines. Results : The respiration rates were significantly higher 4 and 7 days after the bleomycin treatment compared with those of the control rats. The tidal volume was lower in rats at 4 days after the bleomycin treatment, and the wet/dry weights of the lung were significantly higher than those of the control group. The nitrite and nitrate concentrations in the BALF from the rats at 4 days after exposure to bleomycin were greater than those from the saline-treated rats. Immunoblotting studies demonstrated that the AQP1 and AQP4 expression levels were lower in the rats at 4 days. However, the AQP4 expression level was higher at 7 days. The AQP5 expression level increased at 4, 7 and 14 days after the bleomycin treatment. Conclusion : This study demonstrates that AQPs are expressed differently in bleomycin-induced pulmonary edema.

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

A METHOD OF CAPABILITY EVALUATION FOR KOREAN PADDY SOILS -Part 2. The rice yield prediction by soil fertility constituents and other characters (한국(韓國) 답토양(畓土壤)의 생산력(生産力) 평가방법에 관한 연구 -2 보(報)·비옥도(肥沃度) 구성인자(構成因子) 및 기타(其他) 특성(特性)에 의(依)한 쌀수확량(收穫量)의 추정(推定))

  • Hong, Ki-Chang;Maeng, Do-Won;Kazutake, Kyuma;Hisao, Furukawa;Suh, Yoon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.1
    • /
    • pp.15-23
    • /
    • 1979
  • In the first paper of the series the five soil fertility factors were evaluated by means of principal component analysis and varimax method. They are interpreted as representing, 1) skeletal available phosporus status, 2) organnic matter status, 3) salt status 4) base status, and 5) free oxide status. In order to resynthesize such fragmented information for the overall soil fertility evaluation, the method of multiple regression analysis was adopted, using the five factor scores and yield data for Korean paddy soils as independent and dependent variables respectively. As test of linear models with different combinations of independent variables the results of t-test of regression coefficient were revealed that the organic matter status (FII) has no relevance to the yield of paddy and that the free oxides and salt supply has by it self only an insignificant contribution to the yield. The multiple correlation coefficient (R) revealed its multiple regression analysis was as low as 0.43. Introduction of quadratic terms to the linear model bettered the result. Thus multiple correlation coefficient (R) was increased as 0.59. Therefore, a coefficient of determination 0.35 was obtained by a quadratic model with interaction terms among the five fertility constituents. Generally we think that the fertility factor has more contribution to raise the rice yield in paddy and that the failure of yield prediction by fertility factor scores was caused by one of follows; 1) the roughness of the yield inspection, and 2) missextraction of fertility constituents. The second step in this study, assuming that the residuals by multiple regression analysis were due to factors other than soil fertility, we can now proceed to predicting the yield from the field characters with the classified fertility groups by means of Hayashi's theory of quantification No. 1. Such variables as fertility groups (FTYG), water availability (WATER), soil drainage (DRNG), climatic zone (CLIZ), surface soil's stickiness (STCKT), surface soil's dry consistence (DCNST), and surface soil's texture (FTEXT) are taken up as the explanatory variables. The quantification appears reasonable; the well to extremely well in soil drainage, very sticky of surface soil, inefficiency in water availability, coarse texture, and very hard to extremely hard dry consistence in soil are detrimental to the rice yield. The R was as high as 0.90 for the set of variables. But the given explanatory variables in this study were not quite effective in explaining rice yield. The method developed seems to be promising only if properly collected data are available. Conditions that should be satisfied in the yield inspection obtained from common cultivator for the purpose of deriving a prediction equation were put forward.

  • PDF

Effects of pH and Redox Conditon on Silica Sorption in Submerged soils (담수조건(湛水條件)에서 토양산도(土壤酸度)와 산화환원(酸化還元) 전위(電位)가 토양(土壤)의 규산흡착(珪酸吸着)에 미치는 영향(影響))

  • Lee, Sang-Eun;Neue, Heins Ulitz
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.111-126
    • /
    • 1992
  • Silica sorption isotherm belonged to the C-type with weak L-type characteristics according to the classification system of adsorption isotherm. Silica sorption isothem fitted well to the Freundlich and Tempkin equation but not to the Langmuir equation. The color interference probably due to $Fe^{2+}$ during spectrometric silca determination by Molybdenum-blue method affected the sorption isotherm in reduced soils or low pH. Four parameters such as the intercept of Freundlich equation, the slope of Tempkin equation, the "Silica reactivity", and the "C-type slope", where the last two parameters were termed in the current study, were examined to assess treatment effects on silica sorption. Among them the "C-type slope" was found out to be the best parameter. The C-type isotherms showed the same high correlation coefficient as Freundlich and Tempkin equation when regressed to the sorption isothem. Plotting the C-type slope on a logarithmic scale vs. the pH showed high linearity. Using the "C-type slope" as a perameter, the pH and soil type affected the silica sorption while the effect of redox condtion was not significant. All Fe and Al extracted by the various reagents, and OM were highly correlated to silica sorption. Among them $Fe_d$ was identified as the highest influencing soil property. Since there is no equivalent reliable method to discriminate the forms of the soil Al-oxides their likely importance remains unclear.

  • PDF

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service (산림청 지원사업에 따라 보급된 산업용 목재펠릿보일러에서 목재펠릿 연소 시 배출되는 일산화탄소와 질소산화물의 배출 특성 및 배출계수 분석)

  • Kang, Sea Byul;Choi, Kyu Sung;Lee, Hyun Hee;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.597-609
    • /
    • 2018
  • Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs. Since carbon monoxide (CO) and nitrogen oxides ($NO_x$) generated during boiler combustion are substances that lead to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and $NO_x$ emission values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission factor was also calculated from the measured exhaust gas concentration (based on exhaust gas $O_2$ concentration of 12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average value of $NO_x$ emitted from industrial wood pellet boilers was 67 ppm and the emission factor of $NO_x$ was 1.63 g/kg. Unlike CO, there was no tendency to decrease according to the installation year. Both CO and $NO_x$ measurements met the limits of the Ministry of Environment. These $NO_x$ emission factors were compared with the $NO_x$ emission factors produced by certified low $NO_x$ burners. The $NO_x$ emission factor of industrial wood pellet boilers was about 1.9 times that of certified low $NO_x$ LNG combustors and about 0.92 times that of coal combustion.

Electrical resistivity characteristics for cement specimens with TiO2 according to activated carbon content (활성탄 함유량에 따른 광촉매(TiO2) 시멘트 시편의 전기비저항 특성)

  • Kong, Tae-Hyun;Lee, Jong-Won;Ye, Ji-Hun;Ahn, Jaehun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.591-610
    • /
    • 2020
  • Concrete with activated carbon and titanium dioxide (TiO2) has been used to reduce the particulate matter (PM) in underground structures (e.g., tunnels) due to the high performance of nitrogen oxides (NOx) abatement. Damage (e.g. crack, spalling, or detachment) can be caused by the environmental and ageing effects on the surface of the particulate matter reduction concrete, installed on the tunnel lining. Therefore, it is important to evaluate the existence of spalling on the concrete surface for maintaining performance of NOx reduction. In this study, a basic research was performed for feasibility of spalling evaluation using electrical resistivity characteristics. Given the test results, the electrical resistivity was decreased as the ratios of activated carbon (0~15%) and TiO2 (0~25%) were increased for specimens. Under a dry condition, electrical resistivity of cement specimens, mixed with activated carbon and TiO2, was decreased up to 2.3 times, compared with the normal cement specimen. In addition, under saturation conditions (degree of saturation: 85~98%), electrical resistivity of cement specimens with activated carbon, was decreased up to 3.5 times, compared with the normal cement specimen. Regardless of the condition (dry or saturated), the difference of electrical resistivity values shows the range of 2.3~2.8 times between the mixing specimen (with activated carbon (15%) and TiO2 (25%)) and the normal cement specimen. This study can help to provide basic knowledge for spalling evaluation using the electrical resistivity on the surface of the particulate matter reduction concrete in tunnels.