• Title/Summary/Keyword: oxides

Search Result 2,584, Processing Time 0.031 seconds

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

Textural and Geochemical Characteristics of Ferromanganese Crusts from the Lomilik and Litakpooki Seamounts, Marshall Islands, West Pacific (서태평양 마샬제도 Lomilik와 Litakpooki 해저산 망간각의 조직 및 지화학적 특성)

  • Woo, Kyeong-Sik;Park, Sung-Hyun;Jung, Hoi-Soo;Moon, Jai-Yoon;Lee, Kyeong-Yong;Choi, Youn-Ji
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2001
  • Six ferromanganese crusts from the Lomilik and Litatfooki seamounts in the Marshall Islands were analyzed for texture, geochemistry and stratigraphy to delineate the paleoceanographic conditions. The crusts can be divided into three layers; 1) outermost massive layer (Layer 1), 2) middle porous Fe-oxides rich layer infllled with biointemal clasts (Layer 2), and 3) innermost massive layer cemented and/or replaced by carbonate fluoapatite (CFA) (Layer 3). The Layer 1 contains higher Mn, Co, Ni, and Mg than other two layers, and the Layer 2 was relatively more enriched in Fe, Al, Ti, Ba, Cu, and Zn. However, the Layer 3 shows higher Ca and P and lower Mn, Fe, Co, and Ni contents than overlying two layers. Based on the Co-chronometry, the crusts are postulated to have begun to grow from 56-31 Ma (early Eocene to Oligocene). The boundaries between layers 1 and 2, and layers 2 and 3 are dated to be 7-3 Ma and 26-14 Ma, respectively. High contents of Ca and P in Layer 3 clearly indicate that the layer had been phosphatized prior to the formation of Layer 2. Considering the well-preserved mjcrostructures in Layer 3, it is unlike that the crusts themselves were recrystallized in suboxic condition. Also, the lower Co concentrations in Layer 3 may imply that the Co supply was not constant during the formation of Layer 3. Layer 2, characterized by the porous texture, grew over Layer 3 during 26-9 Ma. Internal biogenic sediments including foraminifera within the original cavities and the enrichment of organophillic elements such as Ba, Cu, and Zn, suggest that Layer 2 have below high production regions. Also, high content of allumino silicate components may indicate increased terrigeneous input during the formation of Layer 2. The Layer 2. The Layer 1 has been subjected to little diagenetic influence since the Pliocene.

  • PDF

Geochemistry of Granites in the Southern Gimcheon Area of Korea (김천남부에 분포하는 화강암류의 지구화학)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The granites in the southern Gimcheon area can be divided into two parts, marginal hornblende biotite granodiorite (Mgd) and central biotite granodiorite to granite (Cgd). Mgd and Cgd are gray in color and display gradational contact relations and are mainly composed of coarse-grained and medium-grained rocks, respectively. Mgd has more frequent and larger mafic enclaves than Cgd, and the two granites partly show parallel foliation at thire contact with gneisses. From representative samples of the granites, K-Ar biotite ages of 197∼207 Ma were obtained. Considering the blocking temperature of biotite, it is suggested that the emplacement age of the granitic magma was probably late Triassic. The anorthite contents of plagioclases in Mgd display less variation than those of Cgd, indicating that Mgd crystallized within a narrow range of temperatures. In the Al$\_$total/-Mg diagram, the biotites from the granites plot within the subalkaline field, and the smooth slope indicates differentiation from a single magma. All amphiboles from the granites belong to magnesio-hornblende. The linear trends of major oxides, AFM and Ba-Sr-Rb indicate that Mgd and Cgd were fractionally differentiated from a single granitic magma body crystallizing from the margin inwards. The relations of modal (Qz+Af) vs. Op, K$_2$O vs. Na$_2$O, Fe$_2$ $O_3$ vs. FeO, Fe$\^$+3/(Fe$\^$+3/+Fe$\^$+2/) and K/Rb vs. Rb/Sr show that they belong to I-type and magnetite-series granitic rocks developed by the progressive melting products of fixed sources. REE data, normalized to chondrite value, have trends of enriched LREE and depleted HREE together with weakly negative Eu anomalies.

Characterization of Arsenic Sorption on Manganese Slag (망간슬래그의 비소에 대한 수착특성 연구)

  • Seol, Jeong Woo;Kim, Seong Hee;Lee, Woo Chun;Cho, Hyeon Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.229-244
    • /
    • 2013
  • Arsenic contamination may be brought about by a variety of natural and anthropogenic causes. Among diverse naturally-occurring chemical speciations of arsenic, trivalent (As(III), arsenite) and pentavalent (As(V), arsenate) forms have been reported to be the most predominant ones. It has been well known that the behavior of arsenic is chiefly affected by aluminum, iron, and manganese oxides. For this reason, this study was initiated to evaluate the applicability of manganese slag (Mn-slag) containing high level of Mn, Si, and Ca as an efficient sorbent of arsenic. The main properties of Mn-slag as a sorbent were investigated and the sorption of each arsenic species onto Mn-slag was characterized from the aspects of equilibrium as well as kinetics. The specific surface area and point of zero salt effect (PZSE) of Mn-slag were measured to be $4.04m^2/g$ and 7.73, respectively. The results of equilibrium experiments conducted at pH 4, 7 and 10 suggest that the sorbed amount of As(V) was relatively higher than that of As(III), indicating the higher affinity of As(V) onto Mn-slag. As a result of combined effect of pH-dependent chemical speciations of arsenic as well as charge characteristics of Mn-slag surface, the sorption maxima were observed at pH 4 for As(V) and pH 7 for As(III). The sorption of both arsenic species reached equilibrium within 3 h and fitting of the experimental results to various kinetic models shows that the pseudo-second-order and parabolic models are most appropriate to simulate the system of this study.

Study on the Behavior of Colloidal Hematite: Effects of Ionic Composition and Strength and Natural Organic Matter in Aqueous Environments (교질상 적철석의 거동 특성: 수환경 내 이온 조성 및 세기, 자연 유기물이 미치는 영향)

  • Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.347-362
    • /
    • 2020
  • Iron (hydro)oxides in aqueous environments are primarily formed due to mining activities, and they are known to be typical colloidal particles disturbing surrounding environments. Among them, hematites are widespread in surface environments, and their behavior is controlled by diverse factors in aqueous environments. This study was conducted to elucidate the effect of environmental factors, such as ionic composition and strength, pH, and natural organic matter (NOM) on the behavior of colloidal hematite particles. In particular, two analytical methods, such as dynamic light scattering (DLS) and single-particle ICP-MS (spICP-MS), were compared to quantify and characterize the behavior of colloidal hematites. According to the variation of ionic composition and strength, the aggregation/dispersion characteristics of the hematite particles were affected as a result of the change in the thickness of the diffuse double layer as well as the total force of electrostatic repulsion and van der Walls attraction. Besides, the more dispersed the particles were, the farther away the aqueous pH was from their point of zero charge (PZC). The results indicate that the electrostatic and steric (structural) stabilization of the particles was enhanced by the functional groups of the natural organic matter, such as carboxyl and phenolic, as the NOM coated the surface of colloidal hematite particles in aqueous environments. Furthermore, such coating effects seemed to increase with decreasing molar mass of NOM. On the contrary, these stabilization (dispersion) effects of NOM were much more diminished by divalent cations such as Ca2+ than monovalent ones (Na+), and it could be attributed to the fact that the former acted as bridges much more strongly between the NOM-coated hematite particles than the latter because of the relatively larger ionic potential of the former. Consequently, it was quantitatively confirmed that the behavior of colloidal hematites in aqueous environments was significantly affected by diverse factors, such as ionic composition and strength, pH, and NOM. Among them, the NOM seemed to be the primary and dominant one controlling the behavior of hematite colloids. Meanwhile, the results of the comparative study on DLS and spICPMS suggest that the analyses combining both methods are likely to improve the effectiveness on the quantitative characterization of colloidal behavior in aqueous environments because they showed different strengths: the main advantage of the DLS method is the speed and ease of the operation, while the outstanding merit of the spICP-MS are to consider the shape of particles and the type of aggregation.

Vertical Distribution and Contamination of Trace Metals in Sediments Within Hoidong Reservoir (회동저수지 호저퇴적물의 미량원소 오염 및 수직적 분산특성)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Youm, Seung-Jun;Lee, Wook-Jong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.587-604
    • /
    • 2007
  • In order to investigate the vertical variations and speciations of trace elements, and their correlations in Hoidong reservoir, sediment cores (21-41 cm below surface) and interstitial water samples were collected from five sampling locations. The total average concentrations of trace metals in sediment core samples were $232{\pm}30.8mg/kg$ for Zn, $119{\pm}272mg/kg$ for Cu, $58.4{\pm}4.1mg/kg$ for Pb, $15.7{\pm}3.3mg/kg$ for Ni and $1.6{\pm}0.3mg/kg$ for Cd. The total concentrations of trace metals in core sediments generally decreased toward the center of the Hoidong reservoir. The total concentrations of Mn, Pb and Zn decreased with depth for all the sample locations, while Cu and Fe concentrations increased. The trace metal concentrations of interstitial water sample were in the order of Fe>Mn>Cu>Zn, but Cd, Ni and Pb were not detected. The concentrations of Zn, Cu, Fe and Mn in the interstitial water samples showed a tendency of increasing toward the bottom of the core, suggesting a possible upward diffusion. This migration of trace metals may lead to their transfer to the sediment-water interface. These trace elements would be subsequently fixed onto amorphous Fe and Mn-oxides and carbonates in the topmost layer of sediment. Based on the $K_D$ values, the relative mobilities of the studied metals were in the order of Mn>Cu>Zn>Fe. Geochemical partitioning confirmed that surface enrichment by trace metals mainly resulted from a progressive increase of the concentrations in the fractions II and III. Copper, Fe, Mn and Zn concentrations of interstitial water were closely correlated with their exchangeable fractions of sediments.

Removal of Aqueous Arsenic Via Adsorption onto Si Slag (규소 슬래그를 이용한 수용상 비소 흡착 제거)

  • Kim, Seong Hee;Seol, Jeong Woo;Lee, Woo Chun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.521-533
    • /
    • 2013
  • This study was initiated to evaluate the applicability of Si slag as an adsorbent via investigation of the main properties of Si slag as an adsorbent aw well as characterization of adsorption features between aqueous arsenic and Si slag. The specific surface area of Si slag was measured to be 6.71 $m^2/g$ which seems to be slightly higher than those of other slags, but relatively lower than those of iron (oxyhydr)oxides extensively used for arsenic controlling processes. The point of zero salt effect (PZSE) of Si slag determined by potentiometric titration appeared to be comparatively high (7.3), indicating the Si slag may be favorably used for adsorption of arsenic which predominantly exists as an oxy-anions. The results of adsorption isotherm indicate that regardless of arsenic species, Langmuir-type isotherm is the most suitable to simulate the adsorption of arsenic onto Si slag. With regard to pH-dependence of arsenic adsorption, the adsorption maxima of arsenite was centered at pH 7, and the adsorption was remarkably decreased in the other pH conditions. In the case of arsenate, on the other hand, the adsorption was highest at the lowest pH (4.0) and then gradually decreased with the increase of pH. Based on the results of kinetic experiments, it is likely that the adsorption of arsenite approached equilibrium within 2 hr, but it took about 8 hr for arsenate adsorption to be equilibrated. In addition, the Pseudo second order was evaluated to be most consistent with the empirical data of arsenic adsorption onto Si slag in this study. Under identical conditions, the affinity of arsenate onto Si slag was estimated to be nearly 6 times higher than that of arsenite.

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.

Analysis Corrosion Products Formed on the Great Buddha Image of Kotokuin Temple in Kamakura (고덕원 국보 동조아미타여래좌상의 표면에 생성한 부식생성물의 해석)

  • Matsuda Shiro;Aoki Shigeo;Kang, Dai-il
    • 보존과학연구
    • /
    • s.17
    • /
    • pp.161-182
    • /
    • 1996
  • In natural atmosphere, copper and copper alloy have been used to make buddha statues and ornaments of historic buildings since the abovementioned metals have corrosion resistance in some extent, and the patinaformed on the surface of the metals has provided the people aesthetic satisfaction with its beauty. But in atmosphere polluted by $SO_x$and $NO_x$, the patina layer does not work as a protective film, and it allows damages of the metal. Since 1992, Tokyo National Research Institute of Cultural Properties(TNRICP)has conducted studies on the influence of atmospheric pollution on metal cultural property held under open air. The Great Buddha Image which is located in Kamakura about 50km west from Tokyo, has been selected as one of the objects to study because it is made by copper alloy and it has stood exposed in the air for about a few hundreds years. Furthermore it is also the reason to study on it that there are many cultural properties in the surroundings of it. We have analysed the components and the structure of the corrosion products formed on the surface of the Buddha, have carried out exposure tests using the alloy samples which have simulated the components of the Great Image, and have observed climated and polluted air in order to discuss the relation between corrosion of metals in open air and conditions of the atmosphere. In this paper, the authors have described the components and the structure of the corrosion product formed on the surface of the Great Image by means of X-ray fluorescence spectroscopy and X-ray diffraction. The conclusions are as follows. (1) Sulfate patina composed mainly with brochantite were detected on the all sides of the Image and the amount of the patina is found more on the back of the Image facing to north. (2) Antlerite were detected on the back and a park of the left side facing to west, and formation of it was considered to have close relation with malignant atmosphere. (3) A big amount of chloride patina which mainly composed of atacamite were observed on the front facing to south. (4) Carbonate patina mainly composed of malachite were detected on the area where brochantite was often detected as well. It suggested that malachite had been transformed into brochantite by deteriorated atmosphere. (5) On the all sides of the Image, patina were observed together with copper oxides mainly composed of cuprous oxide. It showed that the surface layer of the Image consists of two layers : inner layer of oxide and outer layer of patina. (6) Corrosion products of lead which was a component of copperalloy were detected on the all sides : the main lead product found on the front was chlorophosphate whereas the one on the back was sulfate.

  • PDF

Study on Oxidation and Coercivity of Nd2Fe14B Compound Crystal (Nd2Fe14B 화합물 결정의 산화 및 보자력에 관한 연구)

  • Kwon, H.W.;Yu, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • Oxidation of the $Nd_2Fe_{14}B$ compound crystal and its effect on the coercivity of the fine $Nd_2Fe_{14}B$ crystal particles were investigated. Oxidation kinetics of the $Nd_2Fe_{14}B$ compound crystal was investigated using an excessively grown $Nd_2Fe_{14}B$ grains in the $Nd_{15}Fe_{77}B_8$ alloy ingot. Oxidation of the $Nd_2Fe_{14}B$ compound crystal occurred by dissociation of the phase into multi-phase mixture of ${\alpha}$-Fe, $Fe_3B$, and Nd oxides. Oxidation rate of the $Nd_2Fe_{14}B$ compound crystal showed no dependence on the crystallographic direction. The oxidation reaction was modeled according to simple linear relationship. Activation energy for the oxidation of $Nd_2Fe_{14}B$ compound crystal was calculated to be approximately 26.8 kJ/mol. Fine $Nd_2Fe_{14}B$ crystal particles in near single domain size was prepared by ball milling of the HDDR-treated $Nd_{15}Fe_{77}B_8$ alloy, and these particles were used for investigating the effect of oxidation on the coercvity. The near single domain size $Nd_2Fe_{14}B$ crystal particles (${\fallingdotseq}0.3\;{\mu}m$) had high coercivity over 9 kOe. However, the coercivity was radically reduced as the temperature increased in air (<2 kOe at $200^{\circ}C$). This radical coercivity reduction was attributed to the soft magnetic phases, ${\alpha}$-Fe and $Fe_3B$, which were formed on the surface of the fine particles due to the oxidation.