• Title/Summary/Keyword: oxide thickness measurement

Search Result 101, Processing Time 0.039 seconds

Effect of Pad Thickness on Removal Rate and Within Wafer Non-Uniformity in Oxide CMP (산화막 CMP에서 패드 두께가 연마율과 연마 불균일도에 미치는 영향)

  • Bae, Jae-Hyun;Lee, Hyun-Seop;Park, Jae-Hong;Nishizawa, Hideaki;Kinoshita, Masaharu;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.358-363
    • /
    • 2010
  • The polishing pad is important element for polishing characteristic such as material removal rate(MRR) and within wafer non-uniformity(WIWNU) in the chemical mechanical planarization(CMP). The result of the viscoelasticity measurement shows that 1st elastic modulus is increased and 2nd elastic modulus is decreased when the top pad is thickened. The finite element analysis(FEA) was conducted to predict characteristic of polishing behavior according to the pad thickness. The result of polishing experiment was similar with the FEA, and it shows that the 1st elastic modulus affects instantaneous deformation of pad related to MRR. And the 2nd elastic modulus has an effect on WIWNU due to the viscoelasticity deformation of pad.

Indium Tin Oxide Based Reflector for Vertical UV LEDs (자외선 수직형 LED 제작을 위한 Indium Tin Oxide 기반 반사전극)

  • Jung, Ki-Chang;Lee, Inwoo;Jeong, Tak;Baek, Jong Hyeob;Ha, Jun-Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2013
  • In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a $1mm{\times}1mm$ vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.

Relationship between Thin Film Thickness and Structural Properties of BaTiO3 Thin Films Grown on p-Si Substrates (p-Si 기판에 성장한 BaTiO3 박막의 두께와 구조적 특성과의 관계)

  • Min, Ki-Deuk;Lee, Jongwon;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.334-338
    • /
    • 2013
  • In this study, $BaTiO_3$ thin films were grown by RF-magnetron sputtering, and the effects of the thin film thickness on the structural characteristics of $BaTiO_3$ thin films were systematically investigated. Instead of the oxide substrates generally used for the growth of $BaTiO_3$ thin films, p-Si substrates which are widely used in the current semiconductor processing, were used in this study in order to pursue high efficiency in device integration processing. For the crystallization of the grown thin films, annealing was carried out in air, and the annealing temperature was varied from $700^{\circ}C$. The changed thickness was within 200 nm~1200 nm. The XRD results showed that the best crystal quality was obtained for ample thicknesses 700 nm~1200 nm. The SEM analysis revealed that Si/$BaTiO_3$ are good quality interface characteristics within 300 nm when observed thickness. And surface roughness observed of $BaTiO_3$ thin films from AFM measurement are good quality surface characteristics within 300 nm. Depth-profiling analysis through GDS (glow discharge spectrometer) showed that the stoichiometric composition could be maintained. The results obtained in this study clearly revealed $BaTiO_3$ thin films grown on a p-Si substrate such as thin film thickness. The optimum thickness was 300 nm, the thin film was found to have the characteristics of thin film with good electrical properties.

The post annealing effect on the properties of AZO films (AZO 박막의 후 열처리에 따른 특성변화)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Cho, Hyung-Jun;Hong, Byung-You;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.457-458
    • /
    • 2009
  • In this work, transparent conducting Al-doped zinc oxide (AZO) films were prepared on Coming glass substrate by RF magnetron sputtering using an Al-doped ZnO target (Al: 2 wt.%) at room temperature and all films were deposited with athickness of 150 nm. We investigated the effects of the post-annealing temperature and the annealing ambient on structural, electrical and optical properties of AZO films. The films were annealed at temperatures ranging from 300 to $500^{\circ}C$ in steps of $100^{\circ}C$ using rapid thermal annealing equipment in oxygen. The thickness of the film was observed by field emission scanning electron microscopy (FE-SEM) and grain size was calculated from the XRD spectra using the Scherrer equation and their electrical properties were investigated using a hole measurement and the reflectance of AZO films was investigated by UV-VIS spectrometry.

  • PDF

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

The Study on the Characteristics of ReRAM with Annealing Temperature and Oxide Thickness (열처리 온도 및 산화층 두께에 따른 ReRAM 특성 연구)

  • Choi, Jin-hyung;Lee, Seung-cheol;Cho, Won-Ju;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.722-725
    • /
    • 2013
  • In this work, we have been analyzed the characteristics of ReRAM with different annealing condition and temperature. The ReRAM devices with top electrode=150nm, bottom electrode=150nm, oxide thickness=70nm and annealing temperature=$500^{\circ}C$, $850^{\circ}C$ have been used in characterization. The Set/Reset voltage, sensing window and resistivity have been characterized. From the measurement results, the Set/Reset voltage and sensing window have been enhanced as the annealing temperature has been increased. But it has been decreased as the temperature performance has been increased. In case of the annealing temperature=$850^{\circ}C$, the variation of Set/Reset voltage was lower than that of other condition. But the variation of sensing window was the lowest when the annealing temperature was $500^{\circ}C$. With considering the variation of Set/Reset voltage and sensing window, the devices annealed at $850^{\circ}C$ showed the best performance to ReRAM.

  • PDF

Antinociceptive and anti-inflammatory effects of N-acetylcysteine and verapamil in Wistar rats

  • Elberry, Ahmed Abdullah;Sharkawi, Souty Mouner Zaky;Wahba, Mariam Rofaiel
    • The Korean Journal of Pain
    • /
    • v.32 no.4
    • /
    • pp.256-263
    • /
    • 2019
  • Background: Antinociceptive anti-inflammatory drugs have many adverse effects. The goal of this investigation is to study the probable anti-inflammatory and analgesic effects of verapamil and N-acetylcysteine (NAC) in experimental rats. Methods: Adult male Wistar rats were randomly divided into 4 groups in the antinociceptive study, each containing 6 rats; the normal control group, which received saline (1 mL/kg); the diclofenac group, which received diclofenac sodium (5 mg/kg); the NAC group, which received NAC (125 mg/kg); and the verapamil group, which received verapamil (8 mg/kg). In the anti-inflammatory study, 5 groups were used, the 4 previous groups with the addition of an edema control group, received saline and were subjected to formalin test. Hot plate latency time was recorded for antinociceptive evaluation. Paw edema thickness and biochemical parameters were recorded for anti-inflammatory evaluation. Results: Administration of NAC showed significant prolongation of hot plate latency time at 1 hour when compared to the control group while verapamil showed a significant prolongation of hot plate latency time at 1 and 2 hours when compared to the control group and NAC group values. Administration of NAC and verapamil significantly decreased paw edema thickness at 2, 4, and 8 hours when compared to edema control values. Regarding biochemical markers, NAC and verapamil significantly decreased serum nitric oxide synthase, C-reactive protein, and cyclooxygenase-2 levels compared to the edema control value. In accordance, a marked improvement of histopathological findings was observed with both drugs. Conclusions: NAC and verapamil have antinociceptive and anti-inflammatory effects comparable to diclofenac sodium.

The effect of RF power on the properties of AZO films (합성 RF power에 따른 AZO 박막의 특성변화)

  • Seo, Jae-Keun;Ko, Ki-Han;Lee, Jong-Hwan;Park, Mun-Gi;Seo, Kyung-Han;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.447-447
    • /
    • 2009
  • In this study, transparent and conductive Al-doped zinc oxide (AZO) films were prepared on Corning glass and silicon wafer substrate by RF magnetron sputtering method using an Al-doped ZnO target (Al: 2 wt.%) at room temperature as the thickness of 150 nm. We investigated the effects of the RF power between 100 Wand 350 W in steps of 50 W on structural, electrical and optical properties of AZO films. Also, we studied the effects of the working pressure (3, 4 and 5 mtorr) on that condition. The thickness and cross-sectional images of films were observed by field emission scanning electron microscopy (FE-SEM) and all of the films were kept to be constant to $150\pm10$ nm on Coming glass and silicon wafer. A grain size was calculated from X-ray diffraction (XRD) on using the Scherrer' equation and their electrical properties investigated hall effect electronic transport measurement system. Moreover, we measured transmittance of AZO films by UV/VIS spectrometer.

  • PDF

Characterization of the effect of RF power on the properties of AZO films deposited at room temperature (RF 파워에 따른 상온에서 합성한 AZO 투명전도막의 특성분석)

  • Seo, Jae-Keun;Ko, Ki-Han;Kim, Jae-Kwang;Lee, Jong-Hwan;Lee, You-Sung;Choi, Won-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1345_1346
    • /
    • 2009
  • In this study, transparent and conductive Al-doped zinc oxide (AZO) films were prepared on glass substrate by RF magnetron sputtering method using an Al-doped ZnO target (Al: 2wt.%) at room temperature as the thickness of 150 nm. We investigated the effects of the RF power between 100~350 W in the steps of 50 W on structural, electrical and optical properties of AZO films. The thickness and cross-sectional images of films were observed by field emission scanning electron microscopy (FE-SEM) and all of the films were kept to be constant about 150 nm on glass substrate. The grain size of AZO films figured out X-ray diffraction (XRD) on using the Scherrer' equation and their electrical properties investigated Hall effect electronic transport measurement system. Moreover, we measured transmittance of AZO films by UV/VIS spectrometer.

  • PDF

Coating System for High Quality Ferromagnetic Thin Films (고품위 자성체 박막 코팅 시스템)

  • Kim, Gi-Bum;Hwang, Yoon-Sik;Kim, Yeong-Shik;Park, Jang-Sick;Park, Jae-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.231-232
    • /
    • 2007
  • Nickel oxide thin films were deposited by the DC magnetron reactive sputtering process under the conditions such as various oxygen flow rates(0, 3, 6, 8, 10 sccm) with constant 33 sccm argon flow rate for the sputtering time of 40 second with the power of 0.3 kW. Sheet resistances were measured by the four point probes. In order to observe discharge voltage characteristics according to the oxygen flow rates, the sputtering processes were performed under the powers of 0.2kW and 0.3kW. The feasibility of the coating system for high quality ferromagnetic thin films was tested through the electromagnetic simulation and the thin film thickness measurement from the experiment. It was shown that a discharge voltage was decreased under the low power and low oxygen flow rate, since the oxygen was quickly saturated on nickel target surface. The sheet resistance was increased as oxygen flow rate increased. The film thickness deposited by the coating system for ferromagnetic target was improved approximately 10% in comparison with previous coating systems.

  • PDF