• 제목/요약/키워드: oxide reduction

검색결과 1,337건 처리시간 0.027초

그래핀 옥사이드의 환원 반응에 적용되는 3종류 환원제에 관한 비교 연구 (Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide)

  • 박노일;박완수;이슬비;이성민;정대원
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.99-103
    • /
    • 2015
  • 본 연구에서는, 그래핀 옥사이드(GO)의 환원에 가장 보편적으로 사용되는 3종류의 환원제를 사용하여 환원 그래핀 옥사이드(RGO)를 제조하였다. 합성된 3종류 RGO의 화학적 구조를 비교/분석하여 구조적 특징에 따른 전도도 및 분산성의 차이를 고찰하였다. Ethylene glycol을 사용한 경우에는 환원도가 낮고 전도도도 상대적으로 낮았다. 반면에 hydrazine과 thiourea dioxide (TU)를 사용하여 합성한 RGO에서는 환원 정도, 전도도 및 물에서의 분산성 등에 차이가 거의 없었다. 그러나 N-methylpyrrolidone에서의 분산성은 TU에 의해 합성된 RGO에서 가장 우수하여 4개월 후에도 안정적인 분산액을 유지하였다.

금속이온교환 제올라이트 촉매상에서 메탄을 이용한 산소과잉 배출가스중의 NO 제거 (Catalytic Removal of Nitric Oxide in Oxygen-Rich Exhaust with Methane over Metal Ion-Exchanged Zeolites)

  • 김상환;박정규
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.32-44
    • /
    • 2002
  • Selective catalytic reduction of nitric oxide by methane in the presence of excess oxygen was investigated over copper and cobalt ion-exchanged ZSM-5 zeolites. Copper ion-exchanged ZSM-5(Cu-ZSM-5) has the limitations for commercial applications to lean-bum gasoline and diesel engines due to low thermal stability and resistance to water vapor and sulfur dioxide. But cobalt ion-exchanged ESM-5(Co-ZSM-5) is more active at high temperatures and also stable to water vapor and sulfur dioxide for catalytic reduction of nitric oxide by methane. The catalytic activity of Cu-ZSM-5 for NO reduction increases with increasing temperatures, reaches the maximum conversion of 23.0% at 350\"C. and then decreases with higher temperatures. In the meantime catalytic activities of Co-ZSM-5 show the maximum conversion of 25.8% at $500^{\circ}C$ Therefore Co-ZSM-5 catalysts have higher thermal stability at high temperatures. Catalytic activities of both zeolites were remarkably enhanced with the existence of oxygen in the exhaust. It is noted that the catalytic activity of Cu-ZSM-5 decreases with the increasing concentration of methane while the catalytic activity of Co-ZSM-5 decreases with increasing contents of methane in the exhaust. This may imply the existence of different paths of NO reduction by methane in the presence of excess oxygen fur Cu-ZSM-5 and Co-ZSM-5 catalysts. For binary metal ionexchanged ZSM-5, the primary ion-exchanged metal may be masked by secondary ion-exchanged component, which plays the important role for catalytic activities of binary metal ion-exchanged ZSM-5, Therefore CuCo-ZSM-5 catalysts show the similar volcano-shaped curves to Cu-ZSM-5 catalysts between the activity and temperature. It Is interesting that the activities of CoCu-ZSM-5 catalysts indicate almost no dependence on the concentration of methane in the exhaust.aust.

금속산화물(Cu-ferrite)를 이용한 수소제조 연구 (Study on the hydrogen production using the metal oxide (Cu-ferrite))

  • 박주식;서인태;김정민;이상호;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.201-207
    • /
    • 2004
  • Redox characteristics of metal oxide for hydrogen production by thermochemical water-splitting were investigated. $CuFe_2O_4$ as a redox pair that had a different molar ratio of Cu and Fe were prepared by co-precipitation method. Hydrogen production consisted of water-splitting step and thermal reduction step was performed below 1200K. Redox characteristics of Cu-ferrites were studied using the thermal gravimetric analysis technique. Also, structure change of Cu-ferrite during thermal reduction was investigated using the high temperature controlled XRD. In results, oxygen release of Cu-ferrite during the thermal reduction was initiated at oxygen site combined with Cu. Consequently, oxygen release amount of Cu-ferrite was increased with increase of Cu molar ratio of Cu-ferrite. It was found that thermal reduction of Cu-ferrite was begun at $875^\circ{C}$. It was confirmed that structure of Cu-ferrite was changed to metal and cation excess metal oxide during the thermal reduction step.

동해 울릉분지에서 대륙사면과 분지 퇴적물의 지화학적 특성에 따른 황산염 환원 비교 (Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea)

  • 유옥례;목진숙;김성한;최동림;현정호
    • Ocean and Polar Research
    • /
    • 제32권3호
    • /
    • pp.299-307
    • /
    • 2010
  • In conjunction with geochemical characteristics, rate of sulfate reduction was investigated at two sediment sites in the continental slope and rise (basin) of the Ulleung Basin in the East Sea. Geochemical sediment analysis revealed that the surface sediments of the basin site (D2) were enriched with manganese oxides (348 ${\mu}mol$ $cm^{-3}$) and iron oxides (133 ${\mu}mol$ $cm^{-3}$), whereas total reduced sulfur (TRS) in the solid phase was nearly depleted. Sulfate reduction rates (SRRs) ranged from 20.96 to 92.87 nmol $cm^{-3}$ $d^{-1}$ at the slope site (M1) and from 0.65 to 22.32 nmol $cm^{-3}$ $d^{-1}$ at the basin site (D2). Depth integrated SRR within the top 10 cm depth of the slope site (M1; 5.25 mmol $m^{-2}$ $d^{-1}$) was approximately 6 times higher than that at the basin site (D2; 0.94 mmol $m^{-2}$ $d^{-1}$) despite high organic content (>2.0% dry wt.) in the sediment of both sites. The results indicate that the spatial variations of sulfate reduction are affected by the distribution of manganese oxide and iron oxide-enriched surface sediment of the Ulleung Basin.

전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용 (Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process)

  • 박병흥;정상문
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.291-299
    • /
    • 2018
  • 파이로 공정에서는 사용후핵연료 관리 공정 개발의 일환으로 산화 우라늄을 고온 용융염 전해질계에서 전기화학적 방법으로 환원시키기 위한 전해환원 공정이 개발되고 있다. 이에 따른 전해환원 공정의 반응기 설계를 위해서는 전기화학적 이론에 기초한 모델이 요구되고 있다. 본 연구에서는 상 분리를 설명하는 phase-field 이론에 기초하여 우라늄 산화물의 전해환원 모사를 위한 1차원 모델이 개발되었다. 모델은 우라늄 산화물 내 산소 원소의 확산과 펠렛 표면에서 전기화학 반응 속도를 나타내는 매개변수를 사용하여 외부로부터 내부로 진행되는 전해환원을 잘 모사하고 있으며 계산 결과 전체 전류는 산소원소의 내부 확산에 크게 의존하는 것으로 나타났다. 전해환원 반응에 대한 모델은 대용량 장치 설계에 최적화된 조건 도출에 활용될 것으로 예상되며 장치 설계가 완료되면 공정 연계 모사에 직접 사용될 것으로 기대된다.

고분자불질 및 계면활성제의 유동마찰 저감 특성 비교 연구 (A Comparison Study on Drag Reduction Characteristics of Polymer and Surfactant as Drag Reduction Additive)

  • 조성환;유재성;김성수;정상훈;윤석만
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.398-403
    • /
    • 2010
  • The drag reduction(DR) of non-ionic surfactant and polymer according to the variation of fluid velocity, temperature and surfactant concentration was investigated experimentally. For this experiment, the kind of surfactant was non ionic amine-oxide and the kinds of polymer were polyacrylamide and xantan gum. An experimental apparatus equipped with one water storage tanks was built and two flow meters, two pressure gauges for data logging system was installed. Results showed that the kinds of polymer, polyacrylamide and xantan gum, had DR of below 20% for below 500 ppm in fluid temperature of $50{\sim}80^{\circ}C$. But the kind of surfactant, amine oxide, had DR of above 40% for 500~1000 ppm in fluid temperature of $50{\sim}80^{\circ}C$. As a result, amin oxide showed better materials to use to the district heating system.

산화물 환원공정에 의한 Bi-Sb-Te계 열전분말 합성 (Synthesis of Bi-Sb-Te-based Thermoelectric Powder by an Oxide-reduction Process)

  • 이길근;김성현;하국현;김경태
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.336-341
    • /
    • 2010
  • The present study focused on the synthesis of Bi-Sb-Te-based thermoelectric powder by an oxidereduction process. The phase structure, particle size of the synthesized powders were analyzed using XRD and SEM. The synthesized powder was sintered by the spark plasma sintering method. The thermoelectric property of the sintered body was evaluated by measuring the Seebeck coefficient and specific electric resistivity. The $Bi_{0.5}Sb_{1.5}Te_3$ powder had been synthesized by a combination of mechanical milling, calcination and reduction processes using mixture of $Bi_2O_3$, $Sb_2O_3$ and $TeO_2$ powders. The sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ powder synthesized by an oxide-reduction process showed p-type thermoelectric characteristics, even though it had lower thermoelectric properties than the sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric powder synthesized by the conventional melting-crushing method.

루테늄 산화물 나노 섬유 지지체에 담지된 고 분산성 촉매의 전기화학적 거동 (Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports)

  • 안건형;안효진
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.96-101
    • /
    • 2017
  • Well-dispersed platinum catalysts on ruthenium oxide nanofiber supports are fabricated using electrospinning, post-calcination, and reduction methods. To obtain the well-dispersed platinum catalysts, the surface of the nanofiber supports is modified using post-calcination. The structures, morphologies, crystal structures, chemical bonding energies, and electrochemical performance of the catalysts are investigated. The optimized catalysts show well-dispersed platinum nanoparticles (1-2 nm) on the nanofiber supports as well as a uniform network structure. In particular, the well-dispersed platinum catalysts on the ruthenium oxide nanofiber supports display excellent catalytic activity for oxygen reduction reactions with a half-wave potential ($E_{1/2}$) of 0.57 V and outstanding long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 19 mV. The enhanced electrochemical performance for oxygen reduction reactions results from the well-dispersed platinum catalysts and unique nanofiber supports.

MMO 촉매 하에서 N2O 분해에 대한 메탄 SCR 반응 및 CO 생성 효과의 비교 연구 (Comparative Reaction Characteristics of Methane Selective Catalytic Reduction with CO Generation Effect in the N2O Decomposition over Mixed Metal Oxide Catalysts)

  • 박선주;박용성
    • 공업화학
    • /
    • 제19권6호
    • /
    • pp.624-628
    • /
    • 2008
  • $N_2O$는 주요 온실가스 성분의 하나로서 광화학 스모그의 유발, 산성비의 전구체 등 온실효과에 상당한 기여를 하고 있는 물질이다. 이러한 $N_2O$ 및 질소산화물을 제거하기 위하여 환원제를 이용한 Selective Catalytic Reduction (SCR) 반응 공정이 널리 사용되고 있다. 본 연구에서는 Hydrotalcite 형태의 전구체로부터 Mixed Metal Oxide 촉매를 제조하고 그를 사용하여 $N_2O$ 분해를 위한 메탄 SCR 반응 및 CO의 생성효과를 비교 연구하였다. 실험결과 $CH_4$ 환원제의 첨가는 $N_2O$의 분해 반응에 긍정적인 영향을 미치며, 최적화된 $O_2/CH_4$ 비율의 조건에서 메탄의 부분산화에 의한 SCR 반응이 가장 높은 효율을 나타내는 것을 확인할 수 있었다.