Browse > Article
http://dx.doi.org/10.4150/KPMI.2010.17.4.336

Synthesis of Bi-Sb-Te-based Thermoelectric Powder by an Oxide-reduction Process  

Lee, Gil-Geun (Division of Materials Science and Engineering, Pukyong National University)
Kim, Sung-Hyun (Division of Materials Science and Engineering, Pukyong National University)
Ha, Gook-Hyun (Korea Institute of Materials Science)
Kim, Kyung-Tae (Korea Institute of Materials Science)
Publication Information
Journal of Powder Materials / v.17, no.4, 2010 , pp. 336-341 More about this Journal
Abstract
The present study focused on the synthesis of Bi-Sb-Te-based thermoelectric powder by an oxidereduction process. The phase structure, particle size of the synthesized powders were analyzed using XRD and SEM. The synthesized powder was sintered by the spark plasma sintering method. The thermoelectric property of the sintered body was evaluated by measuring the Seebeck coefficient and specific electric resistivity. The $Bi_{0.5}Sb_{1.5}Te_3$ powder had been synthesized by a combination of mechanical milling, calcination and reduction processes using mixture of $Bi_2O_3$, $Sb_2O_3$ and $TeO_2$ powders. The sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ powder synthesized by an oxide-reduction process showed p-type thermoelectric characteristics, even though it had lower thermoelectric properties than the sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric powder synthesized by the conventional melting-crushing method.
Keywords
Thermoelectric; Oxide; Reduction; Bismuth telluride; Powder;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Q. Cao, T. J. Zhu and X. B. Zhao: J. Alloy. Comp., 449 (2008) 109.   DOI   ScienceOn
2 D. H. Kim and T. Mitani: J. Alloy. Comp., 399 (2005) 14.   DOI   ScienceOn
3 G. G. Lee, D. Y. Lee and G. H. Ha: J. Kor. Powder Metall. Inst., 15 (2008) 352 (Korean).   DOI   ScienceOn
4 D. E. Vanghan: Brit. J. App. Phys., 12 (1961) 414.   DOI   ScienceOn
5 H. Masuda, K. Higashitani and H. Yoshida: Powder Technology Handbook, 3rd ed., CRC Press, New York (2006) 239.
6 J. J. Ritter and P. Maruthamuthu: Inorg. Chem., 36 (1997) 260.   DOI   ScienceOn
7 T. Sun, X. B. Zhao, T. J. Zhu and J. P. Tu: Mater. Lett., 60 (2006) 2534.   DOI   ScienceOn
8 A. Majumdar: Sci., 303 (2004) 777.   DOI   ScienceOn
9 C. B. Vining: Nature, 413 (2001) 577.   DOI   ScienceOn
10 B. C. Sales: Sci., 295 (2002) 1248.   DOI   ScienceOn
11 K. Uemura and I. Nishida: Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 13.
12 G. Wiedemann and R. Franz: Ann. Phys., 89 (1853) 497.
13 K. Uemura and I. Nishida: Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 149.
14 H. Scherrer and S. Scherrer: CRC Handbook of Thermoelectrics, D. M. Rowe (Ed.), CRC Press, New York (1995) 211.
15 A. M. Rao, X. Ji and T. M. Tritt: MRS Bull., 31 (2006) 218.   DOI
16 B. Poudel, Q. Hao, J. Liu and M. S. Dresselhaus: Sci., 320 (2008) 634.   DOI   ScienceOn
17 Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren: Nano Lett., 8 (2008) 2580.   DOI   ScienceOn
18 J. J. Ritter and P. Maruthamuthu: Inorg. Chem., 34 (1995) 4278.   DOI
19 W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt: Appl. Phys. Lett., 94 (2009) 102111.   DOI   ScienceOn
20 Y. Xu, Z. Ren, W. Ren, K. Deng and Y. Zhong: Mater. Lett., 62 (2008) 763.   DOI   ScienceOn