• Title/Summary/Keyword: oxide epitaxy

Search Result 61, Processing Time 0.025 seconds

Molecular Beam Epitaxy Grouth of $\textrm{LaAlO}_3$ Thin Film by a Pulsed laser Deposition Technique (펄스레이저증착법을 이용한 $\textrm{LaAlO}_3$ 박막의 Molecular Beam Epitaxy 성장)

  • Kim, In-Seon;Heo, Nam-Hoe;Park, Yong-Gi
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1999
  • We have developed a laser molecular beam epitaxy system for the layer-by-layer growth of oxide thin films. Using this system, we could grow and control oxide thin films of LaAlO$_3$in a molecular layer epitaxy mode on the atomically flat SrTiO$_3$ substrate with a LaAlO$_3$single crystal target. Very clear RHEED oscillations were observed during to growth of a LaAlO$_3$ film for a long period under the optimized conditions of substrate temperature at $650^{\circ}C$, oxygen pressure at 1$\times$10\ulcorner torr, and an incident laser fluence of 4.6J/$\textrm{cm}^2$. The height of mono-layer-LaAlO$_3$ film grown during one period of RHEED intensity oscillation was 3.8$\AA$.

  • PDF

Vapor Phase Epitaxy of Magnesium Oxide on Si(001) Using a Single Precursor

  • Lee, Sun-Sook;Lee, Sung-Yong;Kim, Chang G.;Lee, Sang-Heon;Nah, Eun-Ju;Kim, Yunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.122-122
    • /
    • 2000
  • Magnesium oxide is thermodynamically very stable, has a low dielectric constant and a low refractive index, and has been widely used as substrate for growing various thin film materials, particulary oxides of the perovskite structure. There has been a considerable interest in integrating the physical properties of these oxides with semiconductor materials such as GaAs and Si. In this regard, it is considered very important to be able to grow MgO buffer layers epitaxially on the semiconductors. Various oxide films can then be grown on such buffer layers eliminating the need for using MgO single crystal substrates. Vapor phase epitaxy of magnesium oxide has been accomplished on Si(001) substrates in a high vacuum chamber using the single precursor methylmagnesium tert-butoxide in the temperature range 750-80$0^{\circ}C$. For the epitaxy of the MgO films, SiC buffer layers had to be grown on Si(001). The films were characterized by reflection high energy electron diffraction (RHEED) in situ in the growth chamber, and x-ray diffraction (XRD), x-ray pole figure analysis, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) after the growth.

  • PDF

A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells (고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구)

  • Kim, Hyunho;Ji, Kwang-Sun;Bae, Soohyun;Lee, Kyung Dong;Kim, Seongtak;Park, Hyomin;Lee, Heon-Min;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).

Atomic Layer-by-Layer Growth of $BaTiO_3/SrTiO_3$ Oxide Artificial Lattice in Laser Molecular Beam Epitaxy System Combined Reflection High Energy Electron Diffraction (Reflection High Energy Electron Diffraction이 결합된 Laser Molecular Beam Epitaxy System에서 $BaTiO_3/SrTiO_3$ 산화물 인공격자의 Layer-by-Layer 성장)

  • Lee, Chang-Hun;Kim, Lee-Jun;Jeon, Seong-Jin;Kim, Ju-Ho;Choe, Taek-Jip;Lee, Jae-Chan
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2003.10a
    • /
    • pp.179.2-179
    • /
    • 2003
  • PDF

Angle-resolved photoemission spectrscopy for chalcogenide and oxide heterostructures (칼코겐화물과 산화물 이종구조의 각도분해능 광전자분광 연구)

  • Chang, Young Jun
    • Vacuum Magazine
    • /
    • v.5 no.2
    • /
    • pp.10-17
    • /
    • 2018
  • Chalcogenide and oxide heterostructures have been studied as a next-generation electronic materials, due to their interesting electronic properties, such as direct bandgap semiconductor, ferroelectricity, ferromagnetism, superconductivity, charge-density waves, and metal-insulator transition, and their modification near heterointerfaces, so called, electronic reconstruction. An angle-resolved photoemission spectroscopy (ARPES) is a powerful technique to unveil such novel electronic phases in detail, especially combined with high quality thin film preparation methods, such as, molecular beam epitaxy and pulsed laser deposition. In this article, the recent ARPES results in chalcogenide and oxide thin films will be introduced.

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

Photoluminescence Studies of ZnO Thin Films on Porous Silicon Grown by Plasma-Assisted Molecular Beam Epitaxy

  • Kim, Min-Su;Nam, Gi-Woong;Kim, So-A-Ram;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.310-310
    • /
    • 2012
  • ZnO thin films were grown on porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The optical properties of the ZnO thin films grown on PS were studied using room-temperature, low-temperature, and temperature-dependent photoluminescence (PL). The full width at half maximum (FWHM) of the near-band-edge emission (NBE) from the ZnO thin films was 98 meV, which was much smaller than that of ZnO thin films grown on a Si substrate. This value was even smaller than that of ZnO thin films grown on a sapphire substrate. The Huang-Rhys factor S associated with the free exciton (FX) emission from the ZnO thin films was found to be 0.124. The Eg(0) value obtained from the fitting was 3.37 eV, with ${\alpha}=3.3{\times}10^{-2}eV/K$ and ${\beta}=8.6{\times}10^3K$. The low- and high-temperature activation energies were 9 and 28 meV, respectively. The exciton radiative lifetime of the ZnO thin films showed a non-linear behavior, which was established using a quadratic equation.

  • PDF