• Title/Summary/Keyword: oxide/hydroxide

Search Result 220, Processing Time 0.03 seconds

CLINICAL APPLICATION OF MTA(MINERAL TRIOXIDE AGGREGATE) FOR APEXIFICATION (치근단 형성술(Apexification)에 있어서 MTA(Mineral Trioxide Aggregate)의 적용)

  • Baik, Byeoung-Ju;Jeon, So-Hee;Kim, Young-Sin;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.700-708
    • /
    • 2001
  • Traumatic injuries in young patients can result in the interruption of the development of the incompletely formed roots. In teeth with incomplete root-end formation and necrotic pulps, the root canals must be completely debrided. Because of a lack of an apical stop and the presence of thin and fragile walls in these teeth, it is imperative to perform apexification to obtain an adequate apical seal. Calcium hydroxide has become the material of choice for apexification. Despite its popularity for the apexification procedure, calcium hydroxide therapy has some inherent disadvantages that include variablility of treatment time, unpredictability of apical closure, difficulty in patient follow-up, and delayed treatment. An alternative treatment to long-term apexification procedure is the use of an artificial apical barrier that allows immediate obturation of the canal. MTA(Mineral Trioxide Aggregate) is a powder consisting of fine hydrophilic particles of tricalcium silicate, tricalcium aluminate, tricalcium oxide and silicate oxide. MTA has a pH of 12.5 after setting, similar to calcium hydroxide. This may impart some antimicrobial properties. MTA has low solubility and a radiopacity slightly eater than that of dentin. Also, MTA leaked significantly less than other materials and induced hard-tissue formation more than other materials.

  • PDF

Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures (흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響)

  • Cho, Seong-Jeong;Kang, Yea-Mook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF

Preparation of Alumina and Amorphous Silica from Clay Minerals (점토광물로부터 알루미나 및 비정질 실리카 제조에 관한 연구)

  • 박희찬;조원제;강효경;손명모
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.81-90
    • /
    • 1989
  • High purity alumina and amorphous silica were prepared from Ha-dong kaolin by means of appliance of sulfuric acid. The effect of sulfuric acid concentration, reaction temperature and reaction time on the formation of aluminum sulfate was investigated. The precipitation conditions ofaluminum sulfate from the sulfuric acid solution with ethanol and ammonium hydroxide were deteremined. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum oxide powder was 85.0 percent. Alumina powder was prepared by calcination of the precipitates, and its purity was 99.0 percent.

  • PDF

Selective Leaching of Zinc from Zinc Oxide Waste and Preparation of Zinc Oxide (유기추출제를 이용한 산화아연 페기물로부터 아연의 선별 침출 및 산화아연 제조)

  • 주창식;천재기
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.401-408
    • /
    • 1998
  • An experimental research was preformed for the development of an effective process for zinc oxide waste(zinc ash) reuse. Zinc was selectively leached from zinc ash by 30 vol.% D2EHPA In kerosine solution, and the leaching velocity was quite fast. Zinc leached was stripped by sulfuric acid solutions, and the amount of zinc stripped was linearly Increased with the amount of sulfuric acid used. Zinc oxide fine particles were obtained by dropwise adding of sodium hydroxide solution to the resultant aqueous zinc solution at 85$^{\circ}C$.

  • PDF

Effect of pH of Precipitation on Physical and Chemical Properties of Hydrous Aluninum Oxide (알루미나수화물(水和物)의 침전(沈澱)pH가 물성(物性)에 미치는 영향(影響))

  • Rhee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 1976
  • A study on the effect of the pH of precipitation on the acid consuming capacity, aging stability, physical and chemical properties of hydrous aluminum oxide prepared by the reaction of aluminum chloride and ammonium hydroxide solution was carried out by means of X-ray diffraction, IR spectra and differential thermal analysis. The results from these experiments are as follows: 1. Hydrous aluminum oxide precipitated at lower pH showed better acid consuming capacity, higher stability and more anion contained in the structure than that prepared at higher pH. 2. The hydrous aluminum oxide prepared at lower pH is amorphous and that prepared at higher pH is crystalline hydrated hydrous aluminum oxide, i.e., Bayerite and these results are conformed to Rhee's hypothesis. 3. The rate of loss of reactivity and the end-point reactivity are related to the pH of precipitation.

  • PDF

Synthesis of Zinc Oxide Nanoparticle-(C60) Fullerene Nanowhisker Composite for Catalytic Degradation of Methyl Orange under Ultraviolet and Ultrasonic Irradiation

  • Ko, Jeong Won;Son, Yeon-A;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.321-328
    • /
    • 2020
  • Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and sodium hydroxide (NaOH) were dissolved in distilled water and stirred for 30 min. The resulting solution was sonicated by an ultrasonic wave for 45 min. This solution was washed with distilled water and ethanol after centrifugation; next, it was placed in an electric furnace at 200℃ for 1 h under the flow of Ar gas to obtain zinc oxide nanoparticle. A zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was synthesized using the zinc oxide nanoparticle solution, C60-saturated toluene, and isopropyl alcohol via the liquid-liquid interfacial precipitation method. The zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite were characterized using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and they were used for the catalytic degradation of methyl orange (MO) under ultraviolet (at 254 and 365 nm) and ultrasonic irradiation. In addition, the catalytic degradation of MO over the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was evaluated using ultraviolet-visible spectroscopy.

Development of Adsorbents for Removal of Hydrogen Sulfide and Ammonia Using Carbon Black from Pyrolysis of Waste Tires (폐타이어 열분해에 의한 카본블랙을 이용한 황화수소와 암모니아 제거를 위한 흡착제 개발)

  • Seo, Yang-Gon;Kim, Chang-Joon;Kim, Dae Hyeok
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • Hydrogen sulfide and ammonia are one of the common malodorous compounds that can be found in emissions from many sewages treatment plants and industrial plants. Therefore, removing these harmful gases from emissions is of significance in both life and industry because they can cause health problems to human and detrimental effects on the catalysts. In this work, pyrolytic carbon blacks from waste tires were used to develop adsorbent with good adsorption capacity for removal of hydrogen and ammonia. Pellet-type adsorbents were prepared by a mixture of carbon black, metal oxide and sodium hydroxide or hydrochloric acid, and their adsorption capacities were estimated by using breakthrough curve of a continuous fixed bed adsorption column at ambient condition. The adsorbent manufactured with a mixture of carbon black, iron oxide(III) and sodium hydroxide showed the maximum working capacity of hydrogen sulfide. For ammonia, maximum working capacity was obtained by the adsorbent manufactured with a mixture of carbon black, copper oxide(II) and hydrochloric acid.

Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

  • Sinha, Shahnawaz;Amy, Gary;Yoon, Yeo-Min;Her, Nam-Guk
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2011
  • The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated microsand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of $C_{eq}=10\;{\mu}g/L$ were 500 mg/L for AA and GFH, 520-1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60-95%.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • v.25
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

Preparation of high Purity manganese oxide by Pyrolysis of solution extracted from ferromanganese dust in AOD process

  • Lee, Gye-Seung;Song, Young-Jun;Kim, Mi-Sung;Shin, Kang-Ho;Cho, Dong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.409-412
    • /
    • 2001
  • The high purity manganese oxides were made from the dust, generated in AOD process that produces a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90%, and its phase was confirmed as Mn₃O₄. In the extraction of manganese, because of remaining amorphous MnO₂, the dust was reduced to MnO by roasting with charcoal. The pulp density of the reduced dust can control pH of the solution more than 4 and then Fe ion is precipitated to a ferric hydroxide. Because a ferric hydroxide co precipitates with Si ion etc, Fe, Si ion was removed f개m the solution. Heating made water to be volatized and nitrates was left in reactor Then nitrates were a liquid state and stirring was possible. Among the nitrates in reactor, only the manganese nitrate which have the lowest pyrolysis temperature pyrolyzed into β-MnO₂powder and NO₂(g) at the temperature less than 200℃. When the pyrolysis of manganese nitrate has been completed about 90%, injection of water stopped the pyrolysis. Nitrates of impurity dissolved and the spherical high purity β-MnO₂powders were obtained by filtering and washing. Mn₂O₃or Mn₃O₄ powder could be manufactured from β-MnO₂powder by controlling the heating temperature. Lastly, a manufactured manganese oxide particle has 99.97% purity.

  • PDF