• Title/Summary/Keyword: oxidative killing

Search Result 15, Processing Time 0.021 seconds

Protective Effects of Antoxidant Enzymes of Candida albicans against Oxidative Killing by Macrophages

  • Kim, Hye-Jin;Na, Byoung-Kuk;Kim, Moon-Bo;Park, Duk-Young;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.117-122
    • /
    • 1999
  • Protective roles of antioxidant enzymes, copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), and catalase of Candida albicans against exogenous reactive oxygens and oxidative killing by macrophages were investigated. The initial growth of C. albicans was inhibited by reactive, oxygen-producing chemicals such as hydrogen peroxide, pyrogallol, and paraquat, but it was restored as the production of antioxidant enzymes were increased. The growth inhibition of C. albicans by reactive, oxygen-producing chemicals was reduced by treating the purified candidal SOD and catalase. Also, in the presence of SOD and catalase, the oxidative killing of C. albicans by macrophages was significantly inhibited. These results suggest that antioxidant enzymes, CuZnSOD, MnSOD, and catalase of C. albicans may play important roles in the protection of C. albicans not only from exogenous oxidative stress but also from oxidative killing by macrophages.

  • PDF

Repressed Quorum Sensing by Overexpressing LsrR Hampers Salmonella Evasion from Oxidative Killing Within Macrophages

  • Choi, Jeong-Joon;Park, Joo-Won;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1624-1629
    • /
    • 2010
  • Bacterial cell-to-cell communication, termed quorum sensing (QS), leads to coordinated group behavior in a cell-density-dependent fashion and controls a variety of physiological processes including virulence gene expression. The repressor of the lsr operon, LsrR, is the only known regulator of LuxS/AI-2-mediated QS in Salmonella. Although lack of lsrR did not result in noticeable differences in Salmonella survival, the down-regulation of QS as a result of lsrR overexpression decreased Salmonella survival within macrophages. We found that impaired growth of Salmonella overexpressing lsrR within macrophages was due largely to its hypersensitivity to NADPH-dependent oxidative stress. This, in turn, was a result of decreased expression of genes involved in the oxidative stress response, such as sodA, sodCI, and sodCII, when lsrR was overexpressed. These results suggest that down-regulation of QS by excess LsrR can lower Salmonella virulence by hampering Salmonella evasion from oxidative killing within macrophages.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

Effect of Kimchi Ingredients to Reactive Oxygen Species in Skin Cell Cytotoxicity (김치 주.부재료의 활성산소에 대한 피부 세포독성 완화효과)

  • 문갑순;류승희;전영수;문정원;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.998-1005
    • /
    • 1997
  • Kimchi showed protective effect from oxidative damage generated by hydrogen peroxide and paraquat. To investigate the major components of kimchi which reduce the cytotoxicity against reactive oxygen species, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured under oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence or presence of kimchi ingredients. Most keratinocyte and fibroblast cells were killed by hydrogen peroxide and paraquat over 1mM concentration, but kimchi ingredients showed protective effects from oxidative damage generated by hydrogen peroxide and onion, among those, garlic showed the most remarkable preventive effect. Most of kimchi ingredients showed protective effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect from cell killing by high dose of hydrogen peroxide, but most ingredients were not effective against paraquat.

  • PDF

Reduction of TNE ${\alpha}-induced$ Oxidative DNA Damage Product, 8-Hydroxy-2'-Deoxyguanosine, in L929 Cells Stably Transfected with Small Heat Shock Protein

  • Park, Young-Mee;Choi, Eun-Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.209-219
    • /
    • 1997
  • Previous studies have demonstrated that oxidative stress involving generation of reactive oxygen species (ROS) is responsible for the cytotoxic action of $TNF{\alpha}$. Protective effect of small heat shock proteins (small HSP) against diverse oxidative stress conditions has been suggeted. Although overexpression of small hsp was shown to provide an enhanced survival of $TNF{\alpha}$-sensitive cells when challenged with $TNF{\alpha}$, neither the nature of $TNF{\alpha}$-induced cytotoxicity nor the protective mechanism of small HSP has not been completely understood. In this study, we have attempted to determine whether $TNF{\alpha}$ induces oxidative DNA damage in $TNF{\alpha}$-sensitive L929 cells. We chose to measure the level of 8-hydroxy-2'-deoxyguanosine (8 ohdG), which has been increasingly recognized as one of the most sensitive markers of oxidative DNA damage. Our results clearly demonstrated that the level of 8 ohdG increased in L929 cells in a $TNF{\alpha}$ dose-dependent manner. Subsequently, we asked whether small HSP has a protective effect on $TNF{\alpha}$-induced oxidative DNA damage. To accomplish this goal, we have stably transfected L929 cells with mouse small hsp cDNA (hsp25) since these cells are devoid of endogenous small hsps. We found that $TNF{\alpha}$-induced 8 ohdG was decreased in cells overexpressing exogenous small hsp. We also found that the cell killing activity of $TNF{\alpha}$ was decreased in these cells as measured by clonogenic survival. Taken together, results from the current study show that cytotoxic mechanism of $TNF{\alpha}$ involves oxidative damage of DNA and that overexpression of the small hsp reduces this oxidative damage. We suggest that the reduction of oxidative DNA damage is one of the most important protective mechanisms of small HSP against $TNF{\alpha}$.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Effect of Kimchi Extracts to Reactive Oxygen species in Skin Cell Cytotoxicity (김치 추출물의 활성산소에 대한 피부세포 독성 완화효과)

  • 류승희;전영수;권명자;문정원;이영순;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.814-821
    • /
    • 1997
  • Kimchi is composed of many ingredients such as Chinese cabbage, garlic, ginger, and red pepper and fermented fish extract. Some of them were known to have antioxidative activities due to their scavenging effect against reactive oxygen species(ROS). To study the health effects of kimchi on human skin cells, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured in oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence and presence of kimchi extract. The survival rate of keratinocyte was greatly reduced when exposed over 1mM concentration of hydrogen peroxide($H_{2}O_{2}$), but cytotoxicity of $H_{2}O_{2}$ was significantly reduced by kimchi extracts on cells. Especially 2 week-fermented kimchi decreased remarkably the cytotoxicity by $H_{2}O_{2}$ to keratinocyte cells. Over 1mM of paraquat concentration showed strong cell toxicity on keratinocyte, but the extracts from kimchi fermented for 1, 2 and 3 weeks showed protective effects in order. Fibroblast cells were significantly affected by $H_{2}O_{2}$ as were keratinocyte cells. Although almost all extacts of kimchi of different fermentation periods showed protective effect against cell killing at 0.5mM concentration of $H_{2}O_{2}$ week-fermented kimchi extract showed the strongest protective effect on fibroblast cells treated with 1mM $H_{2}O_{2}$ for either 1 day or 4 days. However most of kimchi extracts showed weak preventive effect or no effect on oxidative stress produced by paraquat. In conclusion, 2 week-fermented kimchi extract seems to have the best potential in preventing skin cells against oxidative damage which might be related to their scavenging effects of kimchi components produced during their fermentation process.

  • PDF

Improved Anti-Cancer Effect of Curcumin on Breast Cancer Cells by Increasing the Activity of Natural Killer Cells

  • Lee, Hwan Hee;Cho, Hyosun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.874-882
    • /
    • 2018
  • Curcumin is known to possess various biological functions, including anti-inflammatory, anti-oxidative, and anti-cancer activities. Natural killer (NK) cells are large lymphocytes that directly kill cancer cells. However, many aggressive cancers, including breast cancer, were reported to escape the successful killing of NK cells in a tumor microenvironment. In this study, we investigated the anti-cancer effect of curcumin in coculture of human breast carcinoma MDA-MB-231 and NK (NK-92) cells. We found that curcumin had an immune-stimulatory effect on NK-92 by increasing the surface expression of the $CD16^+$ and $CD56^{dim}$ population of NK-92. We confirmed that the cytotoxic effect of NK-92 on MDA-MB-231 was significantly enhanced in the presence of curcumin, which was highly associated with the activation of Stat4 and Stat5 proteins in NK-92. Finally, this improved anticancer effect of curcumin was correlated with decreased expression of pErk and PI3K in MDA-MB-231.

Bleeding Efficiency and Meat Oxidative Stability and Microbiological Quality of New Zealand White Rabbits Subjected to Halal Slaughter without Stunning and Gas Stun-killing

  • Nakyinsige, K.;Fatimah, A.B.;Aghwan, Z.A.;Zulkifli, I.;Goh, Y.M.;Sazili, A.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.406-413
    • /
    • 2014
  • A study was conducted to compare the effect of halal slaughter without stunning and gas stun killing followed by bleeding on residual blood content and storage stability of rabbit meat. Eighty male New Zealand white rabbits were divided into two groups of 40 animals each and subjected to either halal slaughter without stunning (HS) or gas stun-kill (GK). The volume of blood lost during exsanguination was measured. Residual blood was further quantified by determination of haemoglobin content in Longissimus lumborum (LL) muscle. Storage stability of the meat was evaluated by microbiological analysis and measuring lipid oxidation in terms of thiobarbituric acid reactive substances (TBARS). HS resulted in significantly higher blood loss than GK. HS had significantly lower residual haemoglobin in LL muscle compared to GK. Slaughter method had no effect on rabbit meat lipid oxidation at 0, 1, and 3 d postmortem. However, at 5 and 8 days of storage at $4^{\circ}C$, significant differences (p<0.05) were found, with meat from the GK group exhibiting significantly higher levels of MDA than that from HS. At day 3, greater growth of Pseudomonas aeroginosa and E. coli were observed in the GK group (p<0.05) with B. thermosphacta and total aerobic counts remained unaffected by slaughter method. At days 5 and 7 postmortem, bacterial counts for all tested microbes were affected by slaughter method, with GK exhibiting significantly higher growth than HS. It can be concluded that slaughter method can affect keeping quality of rabbit meat, and HS may be a favourable option compared to GK due to high bleed out.

THE EFFECT OF SUPEROXIDE DISMUTASE ON EXPERIMENTAL GINGIVITIS AND ACTIVITY OF 3T3 FIBROBLAST (Superoxide Dismutase가 백서의 실험적 치은염과 3T3 섬유모 세포의 활성에 미치는 영향)

  • Kim, Yoon-Seong;Yoo, Hyung-Keun;Kang, Hyun-Ku;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.222-238
    • /
    • 1995
  • Inflammatory cells may produce active species of oxygen in antimicrobial defense. While such species can directly damage surrounding tissue, their major secondary role may be to mediate important components of the inflammatory response. Superoxide dismutase, antioxidant, have significant anti-inflammatory properties in rheumatoid arthritis, ischemic tissue injury and gastrointestinal disease. Increased oxidative product formation diseases. And superoxide dismutase produced by Porphyromonas Gingivalis is resistant to killing by polymorphonuclear leukocyte. The purpose of this study was to investigate on the effects of superoxide dismutase in 3T3 fibroblast and in experimental gingivitis in the rats. The effect of superoxide dismutase(SOD) to cell morphology and cell activity was measured in cultured mouse 3T3 fibroblast. After experimental gingivitis were induced by lipopolysaccharide(LPb) and bovine serum albumin(BSA), injection of SOD were done. WBC count and histologic findings were observed at 1, 2, 3, and 7 days. The results were as follows; 1. There was a little difference between LPS treated groups and SOD treated groups in 3T3 fibroblast morpholoy. 2. There was no difference between only SOD treated groups (except SOD 150U at 3days) and control in 3T3 fibroblast activity. 3. LPS $0.5{\mu}g/ml$ and SOD treated groups (except 150U) had decreased 3T3 fibroblast activity and no significant difference at 3 days. 4. LPS $5.0{\mu}g/ml$ and SOD treated groups were significantly increased cell activity of 3T3 fibroblast than control group at 1 day(P<0.05). 5. In LPS induced gingivitis, the number of leukocytes in SOD treated was significantly decreased than in saline treated at 1 day(P<0.05). 6. In histopathologic findings of LPS or BSA induced gingivitis, inflammatorycell infiltration in SOD treated groups were less than in saline treated group at 1, 2 and 3 days.

  • PDF