• Title/Summary/Keyword: oxidative degradation

Search Result 243, Processing Time 0.03 seconds

Ziziphus jujuba mill. Extract Promotes Myogenic Differentiation of C2C12 Skeletal Muscle Cells

  • Gyeong Do Park;So Young Eun;Yoon-Hee Cheon;Chong Hyuk Chung;Chang Hoon Lee;Myeung Su Lee;Ju-Young Kim
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.26-33
    • /
    • 2023
  • Ziziphus jujuba Mill. (ZJM), a traditional folk medicine and functional food in South Korea and China, has been reported to having pharmacological activities against anti-cancer, anti-oxidative, and anti-obesity. However, the effect of ZJM related to myoblast differentiation has not been known. In this study, we investigated the effects and mechanism of ZJM on myogenic differentiation of C2C12 cells. ZJM promotes myogenic differentiation and elevates the formation of multinucleated myotube compared to the control group. ZJM significantly increased the mRNA and protein expression of MyHC1, myogenin and MyoD in dose- and time-dependent manner. Interestingly, ZJM significantly inhibited the mRNA and protein expression of protein degradation markers, atrogin-1 and MuRF-1, in dose- and time-dependent manner. Taken together, our data suggest that ZJM is a potential functional candidate for muscle growth and strength by promoting myogenic differentiation.

Dystrophin Degradation in Skeletal Muscles with Lipid Enrichment in Cattle (지방 침착률이 높은 식용소에서 나타난 골격근의 디스트로핀 소실)

  • Jeon, Sung-Hwan;Kim, Ah-Young;Lee, Eun-Mi;Lee, Eun-Joo;Hong, Il-Hwa;Hwang, Ok-Kyung;Jeong, Kyu-Shik
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.592-602
    • /
    • 2016
  • This study investigated the muscular dystrophin levels in freely moving Australian cattle mainly fed grass, freely moving Korean cattle fed mainly a grain diet, and Korean cattle fed a grain diet but housed in a relatively limited space of a cow house. The total skeletal muscle specimens of 244 cattle were collected and immediately fixed in 10% neutral formalin. The same area was biopsied from the cattle in both countries. The findings showed that fatty infiltration is highly correlated with membrane-associated protein degradation in skeletal muscle, and that among several membrane-associated proteins, dystrophin showed the most significant reduction in expression in the cattle with fatty infiltration. Similarly, CD36 was more highly expressed in the cattle with fatty infiltration of skeletal muscle. Various breeding factors, such as oxidative stress; the presence of oxidized lipids in the diet; and environmental factors such as exercise, temperature and amount of time spent, may have critical effects on the degradation of normal cytoskeleton proteins, which are required for maintaining normal skeletal muscle architecture. Among the sarcolemma membrane-associated proteins, dystrophin is the most sensitive membrane protein that is involved muscular dystrophy and muscular degeneration. Thus, the present findings may be useful for studies on muscular dystrophy in humans or the pathogenesis of muscular diseases in animal models.

Cloning Genes Involved in Aniline Degradation from Delftia acidovorans. (Delftia acidovorans로부터 Aniline 분해관련 유전자의 분리)

  • 김현주;김성은;김정건;김진철;최경자;김흥태;황인규;김홍기;조광연
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • Delftia acidovorans 51-A isolated from river water degrades aniline. In order to clone genes involved in aniline degradation, transposon Tn5-B20 was inserted into the strain 51-A to generate a mutant strain 10-4-2 that cannot utilize aniline as a carbon source. The mutant strain was not an auxotroph but could not degrade aniline. Southern hybridization analysis indicated that the transposon was inserted into the mutant bacterial DNA as a single copy. Flanking DNA fragment of Tn5-B2O insertion was cloned and sequenced. DNA sequence analysis revealed three ORFs encoding TdnQ, TdnT, and TdnA 1 that arc responsible for catechol formation from aniline through oxidative deamination. The analysis also confirmed that Tn5-B2O was inserted at the immediate downstream of tdnA1. The result suggests that the transposon insertion behind tdirA1 disrupted the pathway of the catechol formation from aniline, resulting in the mutant phenotype, which cannot degrade aniline. A large plasmid over 100-kb in size was detected from D. acidovorans 51-A and Southern hybridization analysis with Tn5-B2O probe showed that the transposon was inserted on the plasmid named pTDN51. Our results indicated that the tdn genes on pTDN51 of D. acidovorans 51-A are involved in aniline degradation.

Stability of Polyunsaturated Fatty Acids in Storage of Sardine Oil Extracted with BHA added Solvent (BHA 첨가추출 정어리유 저장중의 고도불포화지방산의 안정성)

  • LEE Kang-Ho;JEONG In-Hak;KIM In-Chul;KIM Yeong-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.2
    • /
    • pp.146-151
    • /
    • 1987
  • The storage stability of sardine oil and the effect of BHA on the oxidation of fatty acids especially, highly unsatureted fatty acids like EPA and DHA were investigated. The sardine oil was extracted from round sardine, with chloroform-methanol(2:1 v/v) solvent with/without addition of BHA, and then stored at $30^{\circ}C$. The deterioration of oil was examined periodically by measuring acid value(AV), peroxide value(POV), carbonyl value(COV), and oxygen absorption. The changes in fatty acid composition during the storage was determined by GLC analysis to elucidate the oxidative stability of individual fatty acid. Formation of free fatty acid increased rapidly according to the storage time elapsed in the BHA free oil while it was obviously inhibited in the BHA added oil. Peroxides and carbonyl compounds were formed very rapidly at the beginning of storage of BHA free oil. But in the oil extracted with BHA, formation of peroxides was somewhat inhibited and formation of carbonyl compounds was very strongly inhibited. Principal fatty acids of sardine oil were $C_{16:0},\;C_{16:1},\;C_{18:1},\;C_{20:5}\;and\;C_{22:6}$ acids, and $\omega_33$ polyunsaturated fatty acid $(\omega_3\;PUFA)$ content was very high as much as $23\%$ of the total fatty acid content. The oxidative degradation of fatty acids was enhanced at PUFA especially $C_{20:5}$ ana $C_{22:6}$ acid in BHA free oil. However, the oxidation was fairly retarded in the oil extracted with BHA and the both $C_{20:5}$ and $C_{22:6}$ acids remained at the end of a month storage.

  • PDF

Increased Hypermethylation of Glutathione S-Transferase P1, DNA-Binding Protein Inhibitor, Death Associated Protein Kinase and Paired Box Protein-5 Genes in Triple-Negative Breast Cancer Saudi Females

  • Hafez, Mohamed M.;Al-Shabanah, Othman A.;Al-Rejaie, Salim S.;Al-Harbi, Naif O.;Hassan, Zeinab K.;Alsheikh, Abdulmalik;Theyab, Abdurrahman I. Al;Aldelemy, Meshan L.;Sayed-Ahmed, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.541-549
    • /
    • 2015
  • Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-${\beta}$ ($RAR{\beta}1$) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin-fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.

Oxidative Stability of Wheat germ Lipid and Changes in the Concentration of Carotenoid and Tocopherol during Oxidation (밀배아 지방질의 산화 안정성과 카로티노이드 및 토코페롤의 변화)

  • Kim, Hae-Gyoung;Cheigh, Hong-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.478-482
    • /
    • 1995
  • The changes of the lipid composition and of the contents of carotenoid and tocopherol in wheat germ were studied during the storage at $30^{\circ}C$. The contents of triglyceride and free fatty acid were changed from 66% and 7% to 49% and 24% respectively after 30 days. The predominant free fatty acids were lauric acid (29%), palmitic acid (21%) and linoleic acid (20%), however, linoleic acid increased to 30%, lauric acid reduced to 21% after storage of 30 days. The carotenoids in the wheat germ were ${\beta}-carotene,\;{\alpha}-carotene$, lutein and taraxanthin, and the contents of these were 306, 59, 383 and 356 ng/g wheat germ, respectively. Their contents, however, were reduced to 36, 4, 203 and 149 ng respectively after 20 storage days. Especially, degradation rate of ${\beta}-carotene$ was 22.5 ng/day. The tocopherol isomers in wheat germ were ${\alpha}-,\;{\beta}-\;and\;{\gamma}-tocopherol$, and they reduced from $55,\;48\;and\;38\;{\mu}g/g$ wheat germ to 35, 32 and $32\;{\mu}g$ respectively after 20 storage days. The ${\alpha}-tocopherol$ was degraded by $1.26\;{\mu}g/day$ at this storage condition.

  • PDF

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells

  • Ly, Luong Dai;Ly, Dat Da;Nguyen, Nhung Thi;Kim, Ji-Hee;Yoo, Heesuk;Chung, Jongkyeong;Lee, Myung-Shik;Cha, Seung-Kuy;Park, Kyu-Sang
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.

The Influence of E-beam Irradiation on POLY(ETHER-BLOCK-AMIDE) (PEBA, Pebax) (전자 빔 조사후 PEBA (Poly Ether Block Amide)의 구조 및 기계적 특성 변화)

  • Shin, Sukyoung;Cho, SangGyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.205-209
    • /
    • 2014
  • Medical polymers require sterilization and must be able to maintain material properties for a specified shelf life. Sterilization can be achieved by using gamma or e-beam exposure. In this study, accelerated aging tests of poly(ether-block-amide) (PEBA) copolymer samples is presented. PEBA copolymer samples with different polyether content that result in Shore hardness of 35D to 72D, were sterilized using e-beam radiation followed by accelerated aging at $55^{\circ}C$. E-beam sterilization effect on molecular weight and mechanical property has performed and analyzed. The average molecular weight significantly reduced as a result of ageing. The enlarged proportion of low molecular weight chains in the aged samples is consistent with the generation of degradation products produced by oxidative chain scission. Also E-beam materials have shown decreased tensile strength and elongation. Overall, this study demonstrated that the medical grade PEBA was significantly affected by radiation exposure over aging time, particularly at high irradiation doses. For medical use in case of radiation sterilization required, it is recommended to avoid Pebax material. If Pebax material must be in use for medical device, recommend to use alternate sterilization method such as Ethylene Oxide sterilization.

Analysis of Degradation Behaviors of Geomembrane by Accelerated Test under UV Exposure Conditions (자외선 노출조건 하에서 가속시험에 의한 지오멤브레인의 분해거동 해석)

  • Park, Yeong Mog;Khan, Belas Ahmed;Jeon, Han Yong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.5-14
    • /
    • 2013
  • In this paper the effect of UV (ultraviolet) exposure on HDPE (high density polyethylene)-smooth and f-PP (flexible polypropylene) geomembranes is evaluated under UVB-313 (ultraviolet wavelength 290-315 nm) exposure. Tensile property, melt flow index (MFI), oxidation induction time (OIT), both standard-OIT and high pressure-OIT and Fourier transform infrared spectroscopy/attenuated total reflectance (FTIR/ATR) results are discussed. Although tensile properties of the exposed geomembrane samples remained unchanged, the depletion of antioxidants was found higher for f-PP than for HDPE geomembrane. Arrhenius model by extrapolation was used on the data to predict the antioxidant lifetime to a typical site temperature of $20^{\circ}C$. There was no significant difference between the MFI value of the virgin and UV exposed HDPE geomembrane samples but a decrease in MFI was found in f-PP geomembrane that signifies that crosslinking has occurred. From FTIR spectra, the small peak (near $1750\;cm^{-1}$) observed in the spectrum of UV exposed sample corresponds to a carbonyl (C=O) linkage, which suggests that oxidation has occurred in the polymer structure, and another new band for f-PP between 3100 and $3500\;cm^{-1}$ is attributed to a hydroxyl bond and/or hydroperoxide bond.

Volatile Components of Traditional Gochujang Produced from Small Farms according to Each Cultivation Region (지역별 소규모 농가 생산 전통 고추장의 휘발성 성분에 관한 연구)

  • Hong, Yeo Joo;Son, Seong Hye;Kim, Ha Youn;Hwang, In Guk;Yoo, Seung Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.451-460
    • /
    • 2013
  • The purpose of this study is to investigate the volatile compounds of Korean traditional gochujang from various districts. The volatiles from each traditional gochujang are being extracted by simultaneous steam distillation extraction (SDE), and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Twenty compounds are identified as major volatile components which include 8 esters, 4 alcohols and 4 acids. The most traditional gochujang possesses more volatile components rather than commercial gochujang products. Most acids come from fatty acids and the alcohols derive from the oxidative degradation of linolenic acid. The most abundant volatile compounds for both traditional and commercial gochujang include 10 compounds such as 2-methyl-1-propanol, hexanal, 2-methyl-1-butanol, octanoic acid ethyl ester, as well as the various type of acids and esters. They represent most of the total GC peak areas, respectively. From the results, the characteristics of the flavors for traditional gochujang from each district are not clear but have shown various components than the commercial products.