• 제목/요약/키워드: oxidative cleavage

검색결과 113건 처리시간 0.018초

Schisandra Chinensis Inhibits Oxidative DNA Damage and Lipid Peroxidation Via Antioxidant Activity

  • Jeong, Jin-Boo;Jeong, Hyung-Jin
    • 한국자원식물학회지
    • /
    • 제22권3호
    • /
    • pp.195-202
    • /
    • 2009
  • Schisandra chinensis have been traditionally used in Asia for the treatment of dyspnea, cough, mouth dryness, spontaneous diaphoresis, nocturnal diaphoresis, nocturnal emission, dysentery, insomnia and amnesia. The purpose of this study is to evaluate the protective effects of Schisandra chinensis on oxidative DNA damage and lipid peroxidation induced by ROS in non cellular and cellular system. DPPH radical, hydroxyl radical and hydrogen peroxide scavenging assay were used to measure the antioxidant activities. Phi X-174RF I plasmid DNA cleavage assay and intracellular DNA migration assay were used to evaluate the protective effect on oxidative DNA damage. MTT assay and lipid peroxidation assay were used for evaluating the protective effect on oxidative cell damage. It was found to scavenge DPPH radical, hydrogen peroxide and hydroxyl radical and it inhibited oxidative DNA damage, lipid peroxidation and cell death induced by hydroxyl radical. These data indicate that Schisandra chinensis possesses a spectrum of antioxidant and DNA-protective properties

${\zeta}-Carotene$의 산화개열산물 (Oxidative Cleavage Products of ${\zeta}-Carotene$)

  • 김선재
    • 한국식품과학회지
    • /
    • 제32권5호
    • /
    • pp.985-990
    • /
    • 2000
  • ${\zeta}-Carotene$를 dichloromethane에 용해하고 dry ice 상에서 ozonolysis을 행하였다. Ozonolysis에 의해 생성된 화합물은 silica gel chromatography를 행하여 분획하고, photodiode array detector를 이용하여 ODS-HPLC로 분석하였다. Toluene에 ${\zeta}-carotene$을 용해하고 $37^{\circ}C$, 72시간 자동산화시킨 결과, 다수의 carbonyl 및 acidic화합물이 생성되었다. ${\zeta}-Carotene$의 자동산화로부터 생성된 carbonyl 화합물의 대부분은 ozonolysis에 의하여 얻어진 산화개열산물이 나타내는 HPLC상의 거동과 분광학적 특성이 서로 잘 일치하였다. 또한 ${\zeta}-carotene$의 자동산화에 의해 생성된 중앙개열 acidic 화합물은 생물활성을 나타내는 4,5-didehydrogeranyl geranyl acid 표준품과 동일한 분광학적 특성을 나타냈다. 이러한 결과는 in vitro상의 산화적 조건하에서 ${\zeta}-carotene$ 자동산화에 의해 eccentric cleavage가 생성됨을 알 수 있었다.

  • PDF

Autoxidation Products of Phytofluene in Liposome and Conversion of Phytapentaenal to 4,5-Didehydrogeranyl Geranoic Acid in Pig Liver Homogenate

  • Kim, Seon-Jae
    • Preventive Nutrition and Food Science
    • /
    • 제5권4호
    • /
    • pp.234-238
    • /
    • 2000
  • The cleavage products formed by autoxidation of phytofluene were evaluated in order to elucidate possible oxidation products of phytofluene under oxidative conditions. Phytofluene solubilized at 50$\mu$M in liposomal suspension was oxidized by incubating at 37$^{\circ}C$ for 72 h. Among a number of oxidation products formed, five products in the carbonyl compound fraction were identified as 6, 10, 14-trimethylpentadeca-3,5,9,13-tetraen-2-one, phytapentaenal, 5,9,13,17-tetramethyloctadeca-2,4,6,8,12,16-hexaenal, 5,9,13,17-tetramethyloctadeca-2,4,8,12,16-pentaenal, 2,7,11,15,19-pentamethylicosa-2,4,6,10,14,18-hexaenal and 4,9,13,17,21-pentamethyldocosa-2,4,6,8,12,16,20-heptaenal. These correspond to a series of products formed by cleavage in the respective eight conjugated double bonds of phytofluene. Also, 4,5-didehydorgeranyl geranoic acid was formed by autoxidation of phytofluene in liposomal suspension. The pig liver homogenate had the ability to convert phytapentaenal to 4,5-didehydrogeranyl geranoic acid, comparable to the conversion of all-trans-retinal to all-trans-retinoic acid. These results suggest that phytofluene is cleaved to a series of long-chain and short-chain carbonyl compounds under the oxidative condition in vitro and that phytapentaenal is further enzymatically converted to 4,5-didehydrogeranyl geranoic acid.

  • PDF

Oxidative damage of DNA induced by the reaction of methylglyoxal with lysine in the presence of ferritin

  • An, Sung Ho;Kang, Jung Hoon
    • BMB Reports
    • /
    • 제46권4호
    • /
    • pp.225-229
    • /
    • 2013
  • Methylglyoxal (MG) is an endogenous metabolite which is present in increased concentrations in diabetics and reacts with amino acids to form advanced glycation end products. In this study, we investigated whether ferritin enhances DNA cleavage by the reaction of MG with lysine. When plasmid DNA was incubated with MG and lysine in the presence of ferritin, DNA strand breakage was increased in a dose-dependent manner. The ferritin/MG/lysine system-mediated DNA cleavage was significantly inhibited by reactive oxygen species (ROS) scavengers. These results indicated that ROS might participate in the ferritin/MG/lysine system-mediated DNA cleavage. Incubation of ferritin with MG and lysine resulted in a time-dependent release of iron ions from the protein molecules. Our data suggest that DNA cleavage caused by the ferritin/MG/lysine system via the generation of ROS by the Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.

Synthesis, Spectroscopic Studies of Binuclear Ruthenium(II) Carbonyl Thiosemicarba-zone Complexes Containing PPh3/AsPh3 as Co-ligands: DNA Binding/Cleavage

  • Sampath, K.;Sathiyaraj, S.;Jayabalakrishnan, C.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.367-373
    • /
    • 2013
  • The ruthenium(II) ferrocenyl heterocyclic thiosemicarbazone complexes of the type $[RuCl(CO)(EPh_3)]_2L$ (where E = P/As; L = binucleating monobasic tridendate thiosemicarbazone ligand) have been investigated. Strutural features were determined by analytical and spectral techniques. Binding of these complexes with CT-DNA by absorption spectral study indicates that the ruthenium(II) complexes form adducts with DNA and has intrinsic binding constant in the range of $3.3{\times}10^4-1.2{\times}10^5M^{-1}$. The complexes exhibit a remarkable DNA cleavage activity with CT-DNA in the presence of hydrogen oxide and the cleavage activity depends on dosage.

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

Oxidative Damage of DNA Induced by Ferritin and Hydrogen Peroxide

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2873-2876
    • /
    • 2010
  • Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. Previous studies have shown that one of the primary causes of increased brain iron may be the release of excess iron from intracellular iron storage molecules. In this study, we attempted to characterize the oxidative damage of DNA induced by the reaction of ferritin with $H_2O_2$. When DNA was incubated with ferritin and $H_2O_2$, DNA strand breakage increased in a time-dependent manner. Hydroxyl radical scavengers strongly inhibited the ferritin/$H_2O_2$ system-induced DNA cleavage. We investigated the generation of hydroxyl radical in the reaction of ferritin with $H_2O_2$ using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS), which reacted with ${\cdot}OH$ to form $ABTS^{+\cdot}$. The initial rate of $ABTS^{+\cdot}$ formation increased as a function of incubation time. These results suggest that DNA strand breakage is mediated in the reaction of ferritin with $H_2O_2$ via the generation of hydroxyl radicals. The iron-specific chelator, deferoxamine, also inhibited DNA cleavage. Spectrophotometric study using a color reagent showed that the release of iron from $H_2O_2$-treated ferritin increased in a time-dependent manner. Ferritin enhanced mutation of the lacZ' gene in the presence of $H_2O_2$ when measured as a loss of $\alpha$-complementation. These results indicate that ferritin/$H_2O_2$ system-mediated DNA cleavage and mutation may be attributable to hydroxyl radical generation via a Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.

쥐오줌풀의 항산화 및 산화적 DNA 손상 억제 활성 (Antioxidative Activities and Inhibition Effects on Oxidative DNA Damage of Valeriana fauriei)

  • 박재호;장태원;이승현
    • 한국약용작물학회지
    • /
    • 제24권6호
    • /
    • pp.464-470
    • /
    • 2016
  • Background: Valeriana fauriei (Valerianaceae) has been used to as a traditional medicine to treat a variety of symptoms, including headache, insomnia, hypertension, and menstrual irregularity. However, the present study investigates the species' antioxidant activity and its inhibition of oxidative DNA damage, which have yet to be studied. Methods and Results: The antioxidant activity was assessed using radical scavenging assays with 1,1-diphenyl-2-picryl hydrazyl (DPPH) and, 2, 2'-azino-bis (3-ethylbenzothiazoline-6 sulfonic acid) diammonium salt (ABTS) and a reducing power assay. The total phenol content was also analyzed, and phenolic compounds were detected using HPLC/UV, whereas the inhibitory effect of Valeriana fauriei on oxidative DNA damage was measured using ${\phi}-174$ RF I plasmid DNA cleavage assay. The DPPH and ABTS radical scavenging activity were $75.17{\pm}3.55%$ and $95.83{\pm}0.63%$, repectively, and the reducing power was $93.14{\pm}1.74$ at $200{\mu}g/m{\ell}$. The total phenol content was $10.24{\pm}0.04mg/g$, whereas chlorogenic acid, catechin, caffeic acid and epicatechin were identified using HPLC/UV, and the ${\phi}-174$ RF I plasmid DNA cleavage assay indicated that V. fauriei provided protection against oxidative damage. Conclusions: The results of the present study suggest that V. fauriei has powerful antioxidant activity that can provide protective effects against the oxidative DNA damage caused by free radicals. The species, therefore, provides a valuable resource for the development of natural pharmaceutical to treat aging, cancer, and degenerative diseases.