Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.4.225

Oxidative damage of DNA induced by the reaction of methylglyoxal with lysine in the presence of ferritin  

An, Sung Ho (Department of Genetic Engineering, Cheongju University)
Kang, Jung Hoon (Department of Genetic Engineering, Cheongju University)
Publication Information
BMB Reports / v.46, no.4, 2013 , pp. 225-229 More about this Journal
Abstract
Methylglyoxal (MG) is an endogenous metabolite which is present in increased concentrations in diabetics and reacts with amino acids to form advanced glycation end products. In this study, we investigated whether ferritin enhances DNA cleavage by the reaction of MG with lysine. When plasmid DNA was incubated with MG and lysine in the presence of ferritin, DNA strand breakage was increased in a dose-dependent manner. The ferritin/MG/lysine system-mediated DNA cleavage was significantly inhibited by reactive oxygen species (ROS) scavengers. These results indicated that ROS might participate in the ferritin/MG/lysine system-mediated DNA cleavage. Incubation of ferritin with MG and lysine resulted in a time-dependent release of iron ions from the protein molecules. Our data suggest that DNA cleavage caused by the ferritin/MG/lysine system via the generation of ROS by the Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.
Keywords
DNA; Fenton reaction; Ferritin; Methylglyoxal;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yan, H. and Harding, J. J. (2005) Carnosine protects against the inactivation of esterase induced by glycation and a steroid. Biochim. Biophys. Acta. 1741, 120-126.   DOI   ScienceOn
2 Seidler, N. W. (2000) Carnosine prevents the glycation-induced changes in electrophoretic mobility of aspartate aminotransferase J. Biochem. Mol. Toxicol. 14, 215-220.   DOI   ScienceOn
3 Baran, E. L. (2000) Metal complexes of carnosine. Biochemistry. (Mosc) 65, 789-797.
4 Brown, C. E. (1981) Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88, 245-256.   DOI   ScienceOn
5 Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179.   DOI   ScienceOn
6 Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. (1994) EPR-spin trapping of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42, 1407-1410.   DOI   ScienceOn
7 Hipkiss, A. R. and Chana, H. (1998) Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem. Biophys. Res. Commun. 248, 28-32.   DOI   ScienceOn
8 Brownson, C. and Hipkiss, A. R. (2000) Carnosine reacts with a glycated protein. Free Radic. Biol. Med. 28, 1564-1570.   DOI   ScienceOn
9 Battah, S., Ahmed, N. and Thornalley, P. J. (2002) Novel anti-glycation therapeutic agents: glyoxalase I mimetics. Int. Congr. Ser. 1245, 107-111.   DOI   ScienceOn
10 Pieroni, L., Khalil, L., Charlotte, F., Poynard, T., Piton, A., Hainque, B. and Imbert-Bismut, F. (2001) Comparison of bathophenanthroline sulfonate and ferene as chromogens in colorimetric measurement of low hepatic iron concentration. Clin. Chem. 47, 2059-2061.
11 An, S. H., Lee, M. S. and Kang, J. H. (2012) Oxidative modification of ferritin induced by methylglyoxal. BMB Rep. 45, 147-152.   DOI   ScienceOn
12 Davies, K. J. (1986) Intracellular proteolytic systems may function as secondary antioxidant defenses: a hypothesis. J. Free Radic. Biol. Med. 2, 155-173.   DOI   ScienceOn
13 Oliver, C. N., Levine, R. L. and Stadtman, E. R. (1987) A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging. J. Am. Geriatr. Soc. 35, 947-956.   DOI
14 Tachon, P. (1989) Ferric and cupric ions requirement for DNA single-strand breakage by $H_{2}O_{2}$. Free Radic. Res. Commun. 7, 1-10.   DOI
15 Halliwell, B. and Gutteridge, J. M. (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347-352.   DOI   ScienceOn
16 Cerruti, P. A. (1994) Oxy-radicals and cancer. Lancet. 344, 862-863.   DOI   ScienceOn
17 Goldstein, S. and Czapski, G. (1986) The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these system from the toxicity of $O_{2}^{-.}$. J. Free Radic. Biol. Med. 2, 3-11.
18 Samuni, A., Chevion, M. and Czapski, G. (1984) Roles of copper and $O_{2}$ in the radiation-induced inactivation of T7 bacteriophage. Radiat. Res. 99, 562-572.   DOI   ScienceOn
19 Prutz, W. A. (1984) Inhibition of DNA-ethidium bromide intercalation due to free radical attack upon DNA. II. Copper(II)-catalysed DNA damage by $O_{2}^{-.}$. Radiat. Environ. Biophys. 23, 7-18.   DOI   ScienceOn
20 Sagripanti, J. L., Swicord, M. L. and Davis, C. C. (1987) Microwave effects on plasmid DNA. Radiat. Res. 110, 219-231.   DOI   ScienceOn
21 von Sonntag, C. (1987) The chemical basis of radiation biology. pp. 487-504, Taylor & Francis, New York, USA.
22 Roberts, M. J., Wondrak, G. T., Laurean, D. C., Jacobson, M. K. and Jacobson, E. L. (2003) DNA damage by carbonyl stress in human skin cells. Mut. Res. 522, 45-56.   DOI   ScienceOn
23 Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames, B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179.   DOI   ScienceOn
24 Bogardus, S. L. and Boissonneault, G. A. (2000) Carnosine inhibits in vitro low‐density lipoprotein oxidation. Nutr. Res. 20, 967-976.   DOI   ScienceOn
25 Calabrese, V., Coombrita, C., Guagliano, E., Sapienza, M., Ravagna, A., Cardile, V., Scapagnini, G., Santoro, A. M., Mangiameli, A., Butterfield, D. A., Giuffrida, Stella, A. M. and Rizzarelli, E. (2005) Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 30, 797-807.   DOI
26 Hipkiss, A. R., Michaelis, J. and Surris, P. (1995) Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett. 371, 81-85.   DOI   ScienceOn
27 Yim, H. S., Kang, S. O., Hah, Y. C., Chock, P. B. and Yim, M. B. (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. J. Biol. Chem. 270, 28228-28233.   DOI
28 Uchida, K., Khor, O. T., Oya, T., Osawa, T., Yasuda, Y. and Miyata, T. (1997) Protein modification by a Maillard reaction intermediate methylglyoxal. Immunochemical detection of fluorescent 5-methylimidazolone derivatives in vivo. FEBS Lett. 410, 313-318.   DOI   ScienceOn
29 Shipanova, I. N., Glomb, M. A. and Nagaraj, R. H. (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 344, 29-36.   DOI   ScienceOn
30 Nagaraj, R. H., Shipanova, I. N. and Faust, F. M. (1996) Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem. 271, 19338-19345.   DOI   ScienceOn
31 Ortwerth, B. J., James, H., Simpson, G. and Linetsky, M. (1998) The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones. Biochem. Biophys. Res. Commun. 245, 161-165.   DOI   ScienceOn
32 Imlay, J. A., Chin, S. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640-642.   DOI   ScienceOn
33 Beard, J. L. and Connor, J. R. (2003) Iron status and neural functioning. Annu. Rev. Nutr. 23, 41-58.   DOI   ScienceOn
34 Halliwell, B. and Gutteridge, J. M. C. (2007) Free radicals in biology and medicine. 4th ed. Oxford University Press, UK.
35 Sagripanti, J. L. and Kraemer, K. H. (1989) Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J. Biol. Chem. 264, 1729-1734.
36 Ozel Turkcu, U., Bilgihan, A., Biberoglu, G. and Mertoglu Caglar, O. (2010) Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress. Mol. Cell. Biochem. 339, 55-61.   DOI
37 Yamamoto, H., Uchigata, Y. and Okamoto, H. (1981) DNA strand breaks in pancreatic islets by in vivo administration of alloxan or streptozotocin. Biochem. Biophys. Res. Commun. 103, 1014-1420.   DOI   ScienceOn
38 Takasu, N., Asawa, T., Komiya, I., Nagasawa, Y. and Yamada, T. (1991) Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for $H_{2}O_{2}$ as an intermediate. J. Biol. Chem. 266, 2112-2114.
39 Dobrota, D., Fedorova, T., Stvolinsky, S., Babusikova, E., Likaveanova, K., Drgova, A., Strapkova, A. and Boldyrev, A. (2005) Carnosine protects the brain of rats and Mongoliangerbils against ischemic injury: after-stroke-effect. Neurochem. Res. 30, 1283-1288.   DOI   ScienceOn
40 Stvolinsky, S., Kukley, M., Dobrota, D., Mezesova, V., Boldyrev, V. and Boldyrev, A. (2000) Carnosine protects rats under global ischemia. Brain Res. Bull. 53, 445-448.   DOI   ScienceOn
41 Kang, J. H. (2003) Oxidative damage of DNA by the reaction of amino acid with methylglyoxal in the presence of Fe(III). Int. J. Biol. Macromol. 33, 43-48.   DOI   ScienceOn