1 |
Yan, H. and Harding, J. J. (2005) Carnosine protects against the inactivation of esterase induced by glycation and a steroid. Biochim. Biophys. Acta. 1741, 120-126.
DOI
ScienceOn
|
2 |
Seidler, N. W. (2000) Carnosine prevents the glycation-induced changes in electrophoretic mobility of aspartate aminotransferase J. Biochem. Mol. Toxicol. 14, 215-220.
DOI
ScienceOn
|
3 |
Baran, E. L. (2000) Metal complexes of carnosine. Biochemistry. (Mosc) 65, 789-797.
|
4 |
Brown, C. E. (1981) Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88, 245-256.
DOI
ScienceOn
|
5 |
Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179.
DOI
ScienceOn
|
6 |
Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. (1994) EPR-spin trapping of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42, 1407-1410.
DOI
ScienceOn
|
7 |
Hipkiss, A. R. and Chana, H. (1998) Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem. Biophys. Res. Commun. 248, 28-32.
DOI
ScienceOn
|
8 |
Brownson, C. and Hipkiss, A. R. (2000) Carnosine reacts with a glycated protein. Free Radic. Biol. Med. 28, 1564-1570.
DOI
ScienceOn
|
9 |
Battah, S., Ahmed, N. and Thornalley, P. J. (2002) Novel anti-glycation therapeutic agents: glyoxalase I mimetics. Int. Congr. Ser. 1245, 107-111.
DOI
ScienceOn
|
10 |
Pieroni, L., Khalil, L., Charlotte, F., Poynard, T., Piton, A., Hainque, B. and Imbert-Bismut, F. (2001) Comparison of bathophenanthroline sulfonate and ferene as chromogens in colorimetric measurement of low hepatic iron concentration. Clin. Chem. 47, 2059-2061.
|
11 |
An, S. H., Lee, M. S. and Kang, J. H. (2012) Oxidative modification of ferritin induced by methylglyoxal. BMB Rep. 45, 147-152.
DOI
ScienceOn
|
12 |
Davies, K. J. (1986) Intracellular proteolytic systems may function as secondary antioxidant defenses: a hypothesis. J. Free Radic. Biol. Med. 2, 155-173.
DOI
ScienceOn
|
13 |
Oliver, C. N., Levine, R. L. and Stadtman, E. R. (1987) A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging. J. Am. Geriatr. Soc. 35, 947-956.
DOI
|
14 |
Tachon, P. (1989) Ferric and cupric ions requirement for DNA single-strand breakage by . Free Radic. Res. Commun. 7, 1-10.
DOI
|
15 |
Halliwell, B. and Gutteridge, J. M. (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347-352.
DOI
ScienceOn
|
16 |
Cerruti, P. A. (1994) Oxy-radicals and cancer. Lancet. 344, 862-863.
DOI
ScienceOn
|
17 |
Goldstein, S. and Czapski, G. (1986) The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these system from the toxicity of . J. Free Radic. Biol. Med. 2, 3-11.
|
18 |
Samuni, A., Chevion, M. and Czapski, G. (1984) Roles of copper and in the radiation-induced inactivation of T7 bacteriophage. Radiat. Res. 99, 562-572.
DOI
ScienceOn
|
19 |
Prutz, W. A. (1984) Inhibition of DNA-ethidium bromide intercalation due to free radical attack upon DNA. II. Copper(II)-catalysed DNA damage by . Radiat. Environ. Biophys. 23, 7-18.
DOI
ScienceOn
|
20 |
Sagripanti, J. L., Swicord, M. L. and Davis, C. C. (1987) Microwave effects on plasmid DNA. Radiat. Res. 110, 219-231.
DOI
ScienceOn
|
21 |
von Sonntag, C. (1987) The chemical basis of radiation biology. pp. 487-504, Taylor & Francis, New York, USA.
|
22 |
Roberts, M. J., Wondrak, G. T., Laurean, D. C., Jacobson, M. K. and Jacobson, E. L. (2003) DNA damage by carbonyl stress in human skin cells. Mut. Res. 522, 45-56.
DOI
ScienceOn
|
23 |
Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames, B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179.
DOI
ScienceOn
|
24 |
Bogardus, S. L. and Boissonneault, G. A. (2000) Carnosine inhibits in vitro low‐density lipoprotein oxidation. Nutr. Res. 20, 967-976.
DOI
ScienceOn
|
25 |
Calabrese, V., Coombrita, C., Guagliano, E., Sapienza, M., Ravagna, A., Cardile, V., Scapagnini, G., Santoro, A. M., Mangiameli, A., Butterfield, D. A., Giuffrida, Stella, A. M. and Rizzarelli, E. (2005) Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 30, 797-807.
DOI
|
26 |
Hipkiss, A. R., Michaelis, J. and Surris, P. (1995) Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett. 371, 81-85.
DOI
ScienceOn
|
27 |
Yim, H. S., Kang, S. O., Hah, Y. C., Chock, P. B. and Yim, M. B. (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. J. Biol. Chem. 270, 28228-28233.
DOI
|
28 |
Uchida, K., Khor, O. T., Oya, T., Osawa, T., Yasuda, Y. and Miyata, T. (1997) Protein modification by a Maillard reaction intermediate methylglyoxal. Immunochemical detection of fluorescent 5-methylimidazolone derivatives in vivo. FEBS Lett. 410, 313-318.
DOI
ScienceOn
|
29 |
Shipanova, I. N., Glomb, M. A. and Nagaraj, R. H. (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 344, 29-36.
DOI
ScienceOn
|
30 |
Nagaraj, R. H., Shipanova, I. N. and Faust, F. M. (1996) Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem. 271, 19338-19345.
DOI
ScienceOn
|
31 |
Ortwerth, B. J., James, H., Simpson, G. and Linetsky, M. (1998) The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones. Biochem. Biophys. Res. Commun. 245, 161-165.
DOI
ScienceOn
|
32 |
Imlay, J. A., Chin, S. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640-642.
DOI
ScienceOn
|
33 |
Beard, J. L. and Connor, J. R. (2003) Iron status and neural functioning. Annu. Rev. Nutr. 23, 41-58.
DOI
ScienceOn
|
34 |
Halliwell, B. and Gutteridge, J. M. C. (2007) Free radicals in biology and medicine. 4th ed. Oxford University Press, UK.
|
35 |
Sagripanti, J. L. and Kraemer, K. H. (1989) Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J. Biol. Chem. 264, 1729-1734.
|
36 |
Ozel Turkcu, U., Bilgihan, A., Biberoglu, G. and Mertoglu Caglar, O. (2010) Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress. Mol. Cell. Biochem. 339, 55-61.
DOI
|
37 |
Yamamoto, H., Uchigata, Y. and Okamoto, H. (1981) DNA strand breaks in pancreatic islets by in vivo administration of alloxan or streptozotocin. Biochem. Biophys. Res. Commun. 103, 1014-1420.
DOI
ScienceOn
|
38 |
Takasu, N., Asawa, T., Komiya, I., Nagasawa, Y. and Yamada, T. (1991) Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for as an intermediate. J. Biol. Chem. 266, 2112-2114.
|
39 |
Dobrota, D., Fedorova, T., Stvolinsky, S., Babusikova, E., Likaveanova, K., Drgova, A., Strapkova, A. and Boldyrev, A. (2005) Carnosine protects the brain of rats and Mongoliangerbils against ischemic injury: after-stroke-effect. Neurochem. Res. 30, 1283-1288.
DOI
ScienceOn
|
40 |
Stvolinsky, S., Kukley, M., Dobrota, D., Mezesova, V., Boldyrev, V. and Boldyrev, A. (2000) Carnosine protects rats under global ischemia. Brain Res. Bull. 53, 445-448.
DOI
ScienceOn
|
41 |
Kang, J. H. (2003) Oxidative damage of DNA by the reaction of amino acid with methylglyoxal in the presence of Fe(III). Int. J. Biol. Macromol. 33, 43-48.
DOI
ScienceOn
|