• Title/Summary/Keyword: oxidative

Search Result 6,194, Processing Time 0.039 seconds

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.

Oxidative Stress Induces Hypomethylation of LINE-1 and Hypermethylation of the RUNX3 Promoter in a Bladder Cancer Cell Line

  • Wongpaiboonwattana, Wikrom;Tosukhowong, Piyaratana;Dissayabutra, Thasinas;Mutirangura, Apiwat;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3773-3778
    • /
    • 2013
  • Increased oxidative stress and changes in DNA methylation are frequently detected in bladder cancer patients. We previously demonstrated a relationship between increased oxidative stress and hypomethylation of the transposable long-interspersed nuclear element-1 (LINE-1). Promoter hypermethylation of a tumor suppressor gene, runt-related transcription factor 3 (RUNX3), may also be associated with bladder cancer genesis. In this study, we investigated changes of DNA methylation in LINE-1 and RUNX3 promoter in a bladder cancer cell (UM-UC-3) under oxidative stress conditions, stimulated by challenge with $H_2O_2$ for 72 h. Cells were pretreated with an antioxidant, tocopheryl acetate for 1 h to attenuate oxidative stress. Methylation levels of LINE-1 and RUNX3 promoter were measured by combined bisulfite restriction analysis PCR and methylation-specific PCR, respectively. Levels of LINE-1 methylation were significantly decreased in $H_2O_2$-treated cells, and reestablished after pretreated with tocopheryl acetate. Methylation of RUNX3 promoter was significantly increased in cells exposed to $H_2O_2$. In tocopheryl acetate pretreated cells, it was markedly decreased. In conclusion, hypomethylation of LINE-1 and hypermethylation of RUNX3 promoter in bladder cancer cell line was experimentally induced by reactive oxygen species (ROS). The present findings support the hypothesis that oxidative stress promotes urothelial cell carcinogenesis through modulation of DNA methylation. Our data also imply that mechanistic pathways of ROS-induced alteration of DNA methylation in a repetitive DNA element and a gene promoter might differ.

Antioxidative effects of Kimchi under different fermentation stage on radical-induced oxidative stress

  • Kim, Boh Kyung;Choi, Ji Myung;Kang, Soon Ah;Park, Kun Young;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.8 no.6
    • /
    • pp.638-643
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Kimchi is a traditional Korean fermented vegetable containing several ingredients. We investigated the protective activity of methanol extract of kimchi under different fermentation stages against oxidative damage. MATERIALS/METHODS: Fresh kimchi (Fresh), optimally ripened kimchi (OptR), and over ripened kimchi (OvR) were fermented until the pH reached pH 5.6, pH 4.3, and pH 3.8, respectively. The radical scavenging activity and protective activity from oxidative stress of kimchi during fermentation were investigated under in vitro and cellular systems using LLC-$PK_1$ cells. RESULTS: Kimchi exhibited strong radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, nitric oxide, superoxide anion, and hydroxyl radical. In addition, the free radical generators led to loss of cell viability and elevated lipid peroxidation, while treatment with kimchi resulted in significantly increased cell viability and decreased lipid peroxidation. Furthermore, the protective effect against oxidative stress was related to regulation of cyclooxygenase-2, inducible nitric oxide synthase, nuclear factor-${\kappa}B$ p65, and $I{\kappa}B$ expression. In particular, OvR showed the strongest protective effect from cellular oxidative stress among other kimchi. CONCLUSION: The current study indicated that kimchi, particularly OptR and OvR, played a protective role against free radical-induced oxidative stress. These findings suggest that kimchi is a promising functional food with an antioxidative effect and fermentation of kimchi led to elevation of antioxidative activity.

Lactoferrin Protects Human Mesenchymal Stem Cells from Oxidative Stress-Induced Senescence and Apoptosis

  • Park, Soon Yong;Jeong, Ae-Jin;Kim, Geun-Young;Jo, Ara;Lee, Joo Eon;Leem, Sun-Hee;Yoon, Joung-Hahn;Ye, Sang Kyu;Chung, Jin Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1877-1884
    • /
    • 2017
  • Mesenchymal stem cells (MSCs) have been suggested as a primary candidate for cell therapy applications because they have self-renewal and differentiation capabilities. Although they can be expanded in ex vivo system, clinical application of these cells is still limited because they survive poorly and undergo senescence or apoptosis when transplanted and exposed to environmental factors such as oxidative stress. Thus, reducing oxidative stress is expected to improve the efficacy of MSC therapy. The milk protein lactoferrin is a multifunctional iron-binding glycoprotein that plays various roles, including reduction of oxidative stress. Thus, we explored the effect of lactoferrin on oxidative stress-induced senescence and apoptosis of human MSCs (hMSCs). Measurement of reactive oxygen species (ROS) revealed that lactoferrin inhibited the production of hydrogen peroxide-induced intracellular ROS, suggesting lactoferrin as a good candidate as an antioxidant in hMSCs. Pretreatment of lactoferrin suppressed hydrogen peroxide-induced senescence of hMSCs. In addition, lactoferrin reduced hydrogen peroxide-induced apoptosis via inhibition of caspase-3 and Akt activation. These results demonstrate that lactoferrin can be a promising factor to protect hMSCs from oxidative stress-induced senescence and apoptosis, thus increasing the efficacy of MSC therapy.

Cytoprotective effects of kurarinone against tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 Cells (HepG2 세포에서 tert-butyl hydroperoxide로 유도된 간독성에 대한 kurarinone의 세포 보호 효과)

  • Kim, Sang Chan;Lee, Jong Rok;Park, Sook Jahr
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.251-259
    • /
    • 2018
  • Objective : Kurarinone is one of the flavonoids isolated from Sophorae Radix with various biological activities including anti-microbial effect. In this study, we investigated the effects of Kurarinone on tert-butyl hydroperoxide (tBHP)-induced oxidative stress finally leading to apoptosis in human hepatoma cell line HepG2. Methods : To determine the effects on cell viability, the cells were exposed to tBHP ($100{\mu}mol/l$) after pretreatment with kurarinone (0.5 and $1{\mu}g/ml$). Cell viability was measured by MTT assay. To reveal the possible mechanism of cytoprotectivity of kurarinone, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, and expression of caspase were examined. Results : tBHP-induced cell death was due to oxidative stress and the resulting apoptosis. Kurarinone dose-dependently protected cells from apoptosis when determined by MTT and TUNEL assay. Consistent with this observation, decreased expression of pro-caspase 3/9 protein by tBHP was restored by kurarinone. Kurarinone also showed anti-oxidative effects by inhibiting generation of ROS and depletion of GSH in tBHP-stimulated HepG2 cells. In addition, kurarinone significantly recovered disruption of mitochondrial membrane potential (MMP) as a start sign of hepatic apoptosis induced by oxidative stress. Conclusion : From these results, it was concluded that kurarinone protected tBHP-induced hepatotoxicity with anti-oxidative and anti-apoptotic activities. Our results suggest that kurarinone might be beneficial to hepatic disorders caused by oxidative stress.

Effect of Vitamin C on Oxidative Stress Induced by Daidzein and Genistein in Hamster Ovary Cells (햄스터 난소세포에서 Daidzein과 Genistein에 의해 유도된 산화적 스트레스에 대한 Vitamin C의 효과)

  • Kim, Min-Hye;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • The oxidative stress causes many diseases like cancer, aging, cardiovascular disease, degenerative neurological disorders (Parkinson’s disease, and Alzheimer's disease) by damage of cell membrane, protein deformation, and damage of DNA due to the oxidation of lipid of cell membrane, protein of tissue or enzyme, carbohydrate, and DNA. It is caused by the reactive oxygen species (ROS) that is produced in the metabolic process of oxygen in cell. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cell systemize the antioxidative enzymes to control the oxidative stress. In this research, it is measured that the survival rate of cell by the typical isoflavonoid of daidzein or genistein, activity of antioxidative enzyme, and ROS level, in order to study the effect of isoflavonoid over the ROS production in cell and antioxidative system. As the similar action of the isoflavonoid with the estrogen is examined, women are encouraged to get bean. In view of this trend, it is very important to find out a combination medicine that lowers the oxidative stress caused by the daidzein in the ovarian cell. In the combined treatment of the typical antioxidant of vitamin C to oxidative stress which induced by daidzein recover the control level particularly lowering the ROS in cell by 30%. However, it made no effect in the combined treatment with genistein. Therefore, the research took the combination effect of daidzein with vitamin C in order to check it effect over the antioxidative system. In conclusion, it was disclosed that the oxidative stress caused by daidzein is related to the lowering activity of SOD, and the specific combination effect of daidzein with vitamin C is related to the recovery of SOD activity.

Oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments

  • Zhao, Yan;Kim, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.722-731
    • /
    • 2020
  • Objective: Two experiments were conducted using 28 healthy multiparous sows to evaluate the oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments. Methods: Fourteen multiparous sows were used in Exp. 1 under a high thermal environment, and the other 14 multiparous sows were used in Exp. 2 under a moderate thermal environment. In both experiments, reproductive performances of sows were recorded. Plasma samples were collected on d 35, 60, 90, and 109 of gestation, and d 1 and 18 of lactation for malondialdehyde, protein carbonyls, 8-hydroxy-deoxyguanosine, immunoglobulin g (IgG), and IgM analysis. Results: For sows in Exp. 1, plasma malondialdehyde concentration on d 109 of gestation tended to be greater (p<0.05) than it on d 18 of lactation. Plasma concentration of protein carbonyl on d 109 of gestation was the greatest (p<0.05) compared with all the other days. Plasma concentrations of 8-hydroxy-deoxyguanosine on d 109 of gestation was greater (p<0.05) than d 18 of lactation in Exp. 1. For sows in Exp. 2, there was no difference of malondialdehyde and protein carbonyl concentration during gestation and lactation. In both Exp. 1 and 2, litter size and litter weight were found to be negatively correlated with oxidative stress indicators. Conclusion: Sows under a high thermal environment had increased oxidative stress during late gestation indicating that increased oxidative damage to lipid, protein, and DNA could be one of the contributing factors for reduced reproductive performance of sows in this environment. This study indicates the importance of providing a moderate thermal environment to gestating and lactating sows to minimize the increase of oxidative stress during late gestation which can impair reproductive outcomes.

The Neuro-Protective Effect of the Methanolic Extract of Perilla frutescens var. japonica and Rosmarinic Acid against H2O2-Induced Oxidative Stress in C6 Glial Cells

  • Lee, Ah Young;Wu, Ting Ting;Hwang, Bo Ra;Lee, Jaemin;Lee, Myoung-Hee;Lee, Sanghyun;Cho, Eun Ju
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.338-345
    • /
    • 2016
  • Neurodegenerative diseases are often associated with oxidative damage in neuronal cells. This study was conducted to investigate the neuro-protective effect of methanolic (MeOH) extract of Perilla frutescens var. japonica and its one of the major compounds, rosmarinic acid, under oxidative stress induced by hydrogen peroxide ($H_2O_2$) in C6 glial cells. Exposure of C6 glial cells to $H_2O_2$ enhanced oxidative damage as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and thiobarbituric acid-reactive substance assays. The MeOH extract and rosmarinic acid prevented oxidative stress by increasing cell viability and inhibiting cellular lipid peroxidation. In addition, the MeOH extract and rosmarinic acid reduced $H_2O_2-indcued$ expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcriptional level. Moreover, iNOS and COX-2 protein expression was down-regulated in $H_2O_2-indcued$ C6 glial cells treated with the MeOH extract and rosmarinic acid. These findings suggest that P. frutescens var. japonica and rosmarinic acid could prevent the progression of neurodegenerative diseases through attenuation of neuronal oxidative stress.

A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

  • Liu, Fan;Celi, Pietro;Chauhan, Surinder Singh;Cottrell, Jeremy James;Leury, Brian Joseph;Dunshea, Frank Rowland
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.263-269
    • /
    • 2018
  • Objective: Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods: A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; $20^{\circ}C$, 45% humidity) or HS ($35^{\circ}C$, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results: Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet${\times}$temperature) the loss of blood $CO_2$ partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet${\times}$temperature). Conclusion: A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

Folic acid supplementation reduces oxidative stress and hepatic toxicity in rats treated chronically with ethanol

  • Lee, Soo-Jung;Kang, Myung-Hee;Min, Hye-Sun
    • Nutrition Research and Practice
    • /
    • v.5 no.6
    • /
    • pp.520-526
    • /
    • 2011
  • Folate deficiency and hyperhomocysteinemia are found in most patients with alcoholic liver disease. Oxidative stress is one of the most important mechanisms contributing to homocysteine (Hcy)-induced tissue injury. However it has not been examined whether exogenous administration of folic acid attenuates oxidative stress and hepatic toxicity. The aim of this study was to investigate the in vivo effect of folic acid supplementation on oxidative stress and hepatic toxicity induced by chronic ethanol consumption. Wistar rats (n = 32) were divided into four groups and fed 0%, 12%, 36% ethanol, or 36% ethanol plus folic acid (10 mg folic acid/L) diets. After 5 weeks, chronic consumption of the 36% ethanol diet significantly increased plasma alanine transaminase (ALT) (P < 0.05) and aspartate transaminase (AST) (P < 0.05), triglycerides (TG) (P < 0.05), Hcy (P < 0.001), and low density lipoprotein conjugated dienes (CD) (P < 0.05) but decreased total radical-trapping antioxidant potential (TRAP) (P < 0.001). These changes were prevented partially by folic acid supplementation. The 12% ethanol diet had no apparent effect on most parameters. Plasma Hcy concentration was well correlated with plasma ALT (r = $0.612^{**}$), AST (r = $0.652^*$), CD (r = $0.495^*$), and TRAP (r = $-0.486^*$). The results indicate that moderately elevated Hcy is associated with increased oxidative stress and liver injury in alcohol-fed rats, and suggests that folic acid supplementation appears to attenuate hepatic toxicity induced by chronic ethanol consumption possibly by decreasing oxidative stress.