• Title/Summary/Keyword: oxidation process

Search Result 2,180, Processing Time 0.028 seconds

A Study on Glass/Mo/ZnO/Glass Thin-film-heaters for Water Heating (수중 발열을 위한 Glass/Mo/ZnO/Glass 구조의 박막형 발열체 연구)

  • Kim, Jiwoo;Choi, Dooho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.43-47
    • /
    • 2022
  • In this study, we demonstrated an eco-friendly thin-metallic-film-based heater which can be operated in water. Based on the materials stability, Mo was selected as the heating element to secure long-term stability. Using a magnetron sputtering, 40 nm-thick Mo layers were deposited onto a glass substrate, followed by the deposition of 60-nm-thick ZnO layer to prevent oxidation during the heater fabrication process. Then, PVB (Polyvinyl Butyral) was applied on top of ZnO layer and an additional glass substrate was placed, which were heated at 150℃ for 2 hr. The PVB was cured with strong adhesion by the processing condition. We operated the Glass/Mo/ZnO/Glass heater in water, and it was shown that the water temperature reached 50℃ within 2 minutes, with a minimal resistance change of the heater. Finally, the heaters exhibit a semi-transparency, and this aesthetic advantage is expected to contribute to the added value of the heater.

Anode processes on Pt and ceramic anodes in chloride and oxide-chloride melts

  • Mullabaev, A.R.;Kovrov, V.A.;Kholkina, A.S.;Zaikov, Yu.P.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.965-974
    • /
    • 2022
  • Platinum anodes are widely used for metal oxides reduction in LiCl-Li2O, however high-cost and low-corrosion resistance hinder their implementation. NiO-Li2O ceramics is an alternative corrosion resistant anode material. Anode processes on platinum and NiO-Li2O ceramics were studied in (80 mol.%) LiCl-(20mol.%)KCl and (80 mol.%)LiCl-(20 mol.%)KCl-Li2O melts by cyclic voltammetry, potentiostatic and galvanostatic electrolysis. Experiments performed in the LiCl-KCl melt without Li2O illustrate that a Pt anode dissolution causes the Pt2+ ions formation at 3.14 V and 550℃ and at 3.04 V and 650℃. A two-stage Pt oxidation was observed in the melts with the Li2O at 2.40 ÷ 2.43 V, which resulted in the Li2PtO3 formation. Oxygen current efficiency of the Pt anode at 2.8 V and 650℃ reached about 96%. The anode process on the NiO-Li2O electrode in the LiCl-KCl melt without Li2O proceeds at the potentials more positive than 3.1 V and results in the electrochemical decomposition of ceramic electrode to NiO and O2. Oxygen current efficiency on NiO-Li2O is close to 100%. The NiO-Li2O ceramic anode demonstrated good electrochemical characteristics during the galvanostatic electrolysis at 0.25 A/cm2 for 35 h and may be successfully used for pyrochemical treating of spent nuclear fuel.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

Natural Indigo Dyeing of Hanji Fabric using Baker's Yeast: Effect of Yeast Concentration and Repeat Dyeing (효모를 사용한 한지직물의 천연인디고 염색 : 효모농도와 반복염색 효과)

  • Son, Kyunghee;Shin, Younsook;Yoo, Dong Il
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.191-201
    • /
    • 2021
  • In this study, an eco-friendly indigo reduction system(scale up reduction, use of buffer solution, and pH control) using baker's yeast(Saccharomyces cerevisiae) was applied for natural indigo(Polygonum tinctorium) dyeing of Hanji fabric and Hanji-mixture fabric(Hanji/Cotton, Hanji/Silk). The effect of concentration of baker's yeast, repeat dyeing, and bath reuse was investigated in terms of dye uptake indicating reduction power. And the oxidation-reduction potential(ORP) was monitored. We also evaluated color properties and colorfastness according to the color strength. The yeast concentration did not significantly affect the maximum reduction power. However, the highest yeast concentration was effective in improving the initial dye uptake, and its the reduction retention power was the most excellent. Even on the last reduction day, the effect of increasing the dye uptake by repeat dyeing was observed. And it was confirmed that the reduction bath could be reused for up to 30 days by supplementing yeast at the end of reduction. For all the fabrics used, deeper and darker PB color were obtained by repeat dyeing. As dyeing was repeated, purplish tint got stronger on the Hanji/Silk fabric compared to other fabrics. Regardless of the composition of Hanji fabrics and color strength, washing and dry cleaning fastness were relatively good with above rating 4-5, and fastness to rubbing and light were acceptable with a rating 3-4 ~ 4-5. The eco-friendly natural indigo dyeing process using niram and baker's yeast would offer global marketability and diversity of Hanji product as a sustainable high value-added material.

Comparison of efficiency in Mainstream ANAMMOX process for ratio of ammonium to nitrite (암모니아성 질소 대비 아질산성 질소 비율에 따른 Mainstream A NAMMOX 공정 효율 비교)

  • Gil, Kyung Ik;Lee, Da Won;Lee, Ji Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.421-421
    • /
    • 2021
  • 도시화, 산업화로 인해 하수처리장 유입하수 내 질소 농도가 증가하면서 그에 따른 부영양화 발생, 수생태계에 독성을 미치는 등의 악영향 또한 증가하게 되었다. 하수 내 고농도 질소를 처리하기 위해 1990년 초 연구가 시작되어 현재 보편적으로 사용되고 있는 생물학적 질소 제거 공정은 산소공급과 외부탄소원 보충 과정에서 상당한 비용이 소요된다. 이와 같은 문제점이 대두됨에 따라 고도의 질소 제거 공정이 요구되면서, 경제적으로 개선이 이루어져 기존의 질산화·탈질 공정보다 효율적인 혐기성 암모늄 산화 공정(ANaerobic AMMonium OXidation, ANAMMOX)이 제안되었다. ANAMMOX 공정은 혐기성 조건 아래 전자공여체와 전자수용체로써 암모니아성 질소와 아질산성 질소를 이용해 질소가스 형태로 질소를 제거하는 공정이다. 질산화·탈질 공정과 비교했을 때, 폭기과정에서의 산소요구량 감소, 외부탄소원 불필요, 질소 제거 과정 단축 등의 장점을 가진다. 본 연구는 수처리공정에서의 ANAMMOX 공정의 적용 가능성을 확인하고, 암모니아성 질소대비 아질산성 질소 비율에 따른 Mainstream ANAMMOX 공정의 효율 비교를 통해 공정의 안정성과 높은 제거효율을 확보할 수 있는 NH4+ 대비 NO2- 비율을 도출하는데 목적이 있다. 실험실 규모의 Mainstream ANAMMOX 반응조에 적용한 비율은 선행연구를 비롯한 화학양론식에서 제시된 비율을 바탕으로 산정하였다. 1.00부터 1.30의 전체적인 비율을 Initial과 Advanced 2개의 구간으로 나누어 운전한 결과, 각 구간의 NH4+ 제거효율은 각각 58~86%, 94~99%였다. NH4+ 대비 NO2- 비율이 증가함에 따라 공정의 안정성이 확보되고, NH4+ 및 총질소(TN) 제거효율이 증가하는 경향이 나타났다. 본 연구의 결과는 수처리공정에서의 안정적인 ANAMMOX 공정 적용을 유도하고, ANAMMOX 공정의 성능개선을 도모하는 연구의 기초로 활용될 수 있다.

  • PDF

Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation

  • Soon Hyung Kang;Jun-Seok Ha
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is a vital source of clean and sustainable hydrogen energy. Moreover, the large-scale H2 production is currently necessary, while long-term stability and high PEC activity still remain important issues. In this study, a GaN-based photoelectrode was modified by an additional NH3 treatment (900℃ for 10 min) and its PEC behavior was monitored. The bare GaN exhibited a highly crystalline wurtzite structure with the (002) plane and the optical bandgap was approximately 3.2 eV. In comparison, the NH3-treated GaN film exhibited slightly reduced crystallinity and a small improvement in light absorption, resulting from the lattice stress or cracks induced by the excessive N supply. The minor surface nanotexturing created more surface area, providing electroactive reacting sites. From the surface XPS analysis, the formation of an N-Ga-O phase on the surface region of the GaN film was confirmed, which suppressed the charge recombination process and the positive shift of EFB. Therefore, these effects boosted the PEC activity of the NH3-treated GaN film, with J values of approximately 0.35 and 0.78 mA·cm-2 at 0.0 and 1.23 VRHE, respectively, and an onset potential (Von) of -0.24 VRHE. In addition, there was an approximate 50% improvement in the J value within the highly applied potential region with a positive shift of Von. This result could be explained by the increased nanotexturing on the surface structure, the newly formed defect/trap states correlated to the positive Von shift, and the formation of a GaOxN1-x phase, which partially blocked the charge recombination reaction.

Inhibitory Effect of Pinus rigida × Pinus taeda on Melanogenesis in B16 F10 Cells

  • Woo-Jin Oh;Seo-Yoon Park;Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.56-56
    • /
    • 2023
  • The cone of Pinus rigida × Pinus taeda (PRT), a plant in the Pinaceae family, has long been used in traditional medicine to treat hemostasis, bruises, and burns. Previous research has shown that regulating oxidation-reduction reactions in reactive oxygen species can help inhibit melanogenesis, the process of melanin synthesis, which is a common target for addressing hyperpigmentation. Inhibiting tyrosinase is also known to be effective in this regard. Based on these findings, we conducted an investigation into the inhibitory effect of the ethyl acetate fraction of PRT (ERT) on melanogenesis in B16 F10 cells. We know that the expression levels of melanin biosynthesis-related proteins, including tyrosinase, TRP-1, and TRP-2, are regulated by MITF (microphthalmia-associated transcription factor) and cAMP, with cAMP affecting the activity of protein kinase A (PKA). PKA can reduce melanogenesis, and CREB reduces the phosphorylation of melanin-producing enzymes. In addition, the MAPK signaling pathway, composed of ERK, JNK, p38, and other factors, is also known to play a role in the inhibition of melanogenesis in melanocytes. Our immunoblotting results showed that ERT inhibited the expression of melanin production-related proteins (tyrosinase, TRP-1, TRP-2, and MITF) that were significantly increased by a-MSH treatment to promote melanin production. Furthermore, the phosphorylation levels of factors related to cAMP/PKA/CREB and MAPK signaling pathways were significantly reduced without affecting the total form. In conclusion, we believe that treatment with ERT can inhibit melanin synthesis by modulating the phosphorylation of cAMP/PKA/CREB and MAPK signaling pathways at the cellular level. These findings suggest the potential of ERT as a raw material for functional cosmetics and pharmaceuticals, thanks to its antioxidant activity and ability to inhibit melanogenesis. We thought that these findings of ERT as a natural plant resource will inspire further research and development in this area.

  • PDF

Evaluation of the Feasibility of the Sample Pretreatment and Nile Red Fluorescence Staining Methods for Quantification of Microplastics in Wastewater Samples (하수처리장 유입⋅유출⋅공정수 내 미세플라스틱 분석을 위한 시료 전처리 기법과 Nile Red 형광염색법 적용성 평가)

  • Jae In Kim;Nguyen Thu Huong;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.1
    • /
    • pp.36-46
    • /
    • 2024
  • Microplastics in water resources have been recognized as a serious problem. The discharge of microplastics from wastewater treatment plants is considered a major contributor to environmental pollution in water resources. However, a reliable analytical method for quantifying microplastics in wastewater treatment plants has not yet been established. This study proposes a reliable, quick, and easy analytical method for quantifying microplastics. For the removal of organic particles, preprocessing steps were applied including oxidation, sonication, washing, and sieving. Nile Red staining was used to visualize microplastics, and quantitative analysis was conducted using fluorescent imaging. The stained microplastics were ultimately quantified through image analysis software. Among the preprocessing steps, sonication and washing stages were particularly effective in efficiently removing interfering substances from wastewater, enhancing the accuracy of the microplastic analysis. Additionally, various solvents (methanol, acetone, and N-hexane) for the Nile Red staining solution were tested. When N-hexane was applied as the solvent, the quantity of stained microplastics was lower compared to methanol and acetone. This suggests that N-hexane has a greater potential of reducing false staining and counting of non-plastic particles. In summary, this research demonstrates a robust method for quantifying microplastics in wastewater treatment plants by employing effective preprocessing steps and optimizing the staining process with Nile Red and N-hexane.

A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds (STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구)

  • Kwang Yong Park;Deog Nam Shim;Jong Moon Ha;Sang Dong Lee;Sung Woo Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

The Potential Substitution of Oyster Shell Powder for Phosphate in Pork Patties Cured with Chinese Cabbage and Radish Powder

  • Su Min Bae;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.849-860
    • /
    • 2024
  • The use of natural ingredients in meat processing has recently gained considerable interest, as consumers are increasingly attracted to clean-label meat products. However, limited research has been conducted on the use of natural substitutes for synthetic phosphates in the production of clean-label meat products. Therefore, this study aimed to explore the potential of oyster shell powder as a substitute for synthetic phosphates in pork patties cured with Chinese cabbage or radish powders. Four different groups of patties were prepared using a combination of 0.3% or 0.6% oyster shell powder and 0.4% Chinese cabbage or radish powder, respectively. These were compared with a positive control group that contained added nitrite, phosphate, and ascorbate and a negative control group without these synthetic ingredients. The results showed that patties treated with oyster shell powder had lower (p<0.05) cooking loss, thickness and diameter shrinkage, and lipid oxidation than the negative control but had lower (p<0.05) residual nitrite content and curing efficiency than the positive control. However, the use of 0.6% oyster shell powder adversely affected the curing process, resulting in a decreased curing efficiency. The impact of the vegetable powder types tested in this study on the quality attributes of the cured pork patties was negligible. Consequently, this study suggests that 0.3% oyster shell powder could serve as a suitable replacement for synthetic phosphate in pork patties cured with Chinese cabbage or radish powders. Further research on the microbiological safety and sensory evaluation of clean-label patties during storage is required for practical applications.