• Title/Summary/Keyword: oxidation process

Search Result 2,180, Processing Time 0.027 seconds

Effective Treatment System for the Leachate from a Small-Scale Municipal Waste Landfill (소규모 쓰레기 매립장 침출수의 효율적인 처리 방안에 관한 연구)

  • Cho Young-Ha;Kwon Jae Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This study was carried out to apply some basic physical and chemical treatment options including Fenton's oxidation, and to evaluate the performances and the characteristics of organic and nitrogen removal using lab-scale biological treatment system such as complete-mixing activated sludge and sequencing batch reactor(SBR) processes for the treatment of leachate from a municipal waste landfill in Gyeongnam province. The results were as follows: Chemical coagulation experiments using aluminium sulfate, ferrous sulfate and ferric chloride resulted in leachate CO $D_{Cr}$ removal of 32%, 23% and 21 % with optimum reaction dose ranges of 10,000~15,000 mg/$\ell$, 1,000 mg/$\ell$ and 500~2,000 mg/$\ell$, respectively. Fenton's oxidation required the optimum conditions including pH 3.5, 6 hours of reaction time, and hydrogen peroxide and ferrous sulfate concentrations of 2,000 ~ 3,000 mg/$\ell$ each with 1:1 weight ratio to remove more than 50% of COD in the leachate containing CO $D_{Cr}$ between 2,000 ~ 3,000 mg/$\ell$. Air-stripping achieved to remove more than 97% of N $H_3$-N in the leachate in spite of requiring high cost of chemicals and extensive stripping time, and, however, zeolite treatment removing 94% of N $H_3$-N showed high selectivity to N $H^{+}$ ion and much faster removal rate than air-stripping. The result from lab-scale experiment using a complete-mixing activated sludge process showed that biological treatability tended to increase more or less as HRT increased or F/M ratio decreased, and, however, COD removal efficiency was very poor by showing only 36% at HRT of 29 days. While COD removal was achieved more during Fenton's oxidation as compared to alum treatment for the landfill leachate, the ratio of BOD/COD after Fenton's oxidation considerably increased, and the consecutive activated sludge process significantly reduced organic strength to remove 50% of CO $D_{Cr}$ and 95% of BO $D_{5}$ . The SBR process was generally more capable of removing organics and nitrogen in the leachate than complete-mixing activated sludge process to achieve 74% removal of influent CO $D_{Cr}$ , 98% of BO $D_{5}$ and especially 99% of N $H_3$-N. However, organic removal rates of the SBR processes pre-treated with air-stripping and with zeolite were not much different with those without pre-treatment, and the SBR process treated with powdered activated carbon showed a little higher rate of CO $D_{Cr}$ removal than the process without any treatment. In conclusion, the biological treatment process using SBR proved to be the most applicable for the treatment of organic contents and nitrogen simultaneously and effectively in the landfill leachate.e.

Effect of Acid Buffering Capacity and Soil Component Remediation of Soil Contaminated with Phenanthrene using Electrokinetic-Fenton Process (산 완충능력과 토양 성분이 동전기-펜톤 공정에 의한 phenanthrene 오염토양 정화에 미치는 영향)

  • Kim, Jung Hwan;Na, So Jeong;Park, Joo Yang;Byun, Young Deog
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.129-136
    • /
    • 2013
  • This research was conducted to investigate effects of acid buffering capacity and soil component in treatment of phenanthrene using electrokinetic-Fenton process. In Hadong clay of high acid buffering and low iron oxide content, it was difficult to oxidize phenanthrene due to shortage of iron catalyst and scavenger effect of carbonate minerals. The desorbed phenanthrene conductive to Fenton oxidation was transported toward cathode by electroosmotic flow. However, in Youngdong illitic clay, oxidation of phenanthrene near anode readily occurred compared to Hadong clay due to high iron content and low acid buffering capacity.

Operational conditions of electrochemical oxidation process for removal of cyanide (CN-) in real plating wastewater

  • Zhao, Xin;Jang, Minsik;Cho, Jin Woo;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.217-222
    • /
    • 2020
  • An electrochemical oxidation process was applied to remove cyanide (CN-) from real plating wastewater. CN- removal efficiencies were investigated under various operating factors: current density and electrolyte concentration. Electrolyte concentration positively affected the removal of both CN- and Chemical Oxygen Demand (COD). As the electrolyte concentration increased from 302 to 2,077 mg Cl-/L, removal efficiency of CN- and COD increased from 49.07% to 98.30% and from 23.53% to 49.50%, respectively, at 10 mA/㎠. Current density affected the removal efficiency in a different way. As current density increased at a fixed electrolyte concentration, CN- removal efficiency increased while COD removal efficiency decreased, this is probably due to lowered current efficiency caused by water electrolysis.

A Study on Removal of Color in Dyeing Wastewater by Ozone Oxidation (오존산화에 의한 염색체수의 색도 제거에 관한 연구)

  • 정순형;최준호
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • This study was conducted to remove the color in dyeing wastewater by ozone oxidation process, and the results were summarized as follows ; The 18.3% of BOD and 56.3% TOC were removed as decreasing with pH 1 in dyeing wastewater, containing the polyester reducing process. It showed that terephthalic acid was precipitated at low pH. The color of dyeing wastewater was removed by the first order reaction, and the reaction rate constants at pH 3, 7, 12 were investigated $0.234{\;}min^{-1},{\;}0.215{\;}min^{-1}{\;}and{\;}0.201{\;}min^{-1}$ respectively. It showed that color was more effectively removed with direct reaction of ozone than radical reaction(non-direct reaction). As increasing of the water temperature, the reaction rate constants were increased slightly. It indicated that activity of ozone was improved at high water temperature.

Preliminary Experiment of Gravel Contact Oxidation Process in the Tropics

  • Abdullah Keizrul bin;Omachi Toshikatsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.12-17
    • /
    • 2006
  • Natural rivers have water purification functions called Gravel Contact Oxidation Process, which decontaminate river water by biological absorption, oxidation and degradation on riverbed gravels. This function has been developed and applied to many small/medium-sized urban rivers in Japan as one of the direct river water purification methods. However the method hasn't been verified in the tropics, which have different climate conditions and river characteristics. A preliminary experiment carried out at a polluted urban tributary in the outskirts of Kuala Lumpur, Malaysia where an increasing attention has been paid to river environment, showed a good applicability to the tropical conditions as a technically practical water purification measure with some maintenance cares for sludge management.

  • PDF

Kinetics of 1,4-Dioxane Oxidation during $O_3-H_2O_2$ Treatment

  • Suh, Jung-Ho;Lee, Hak-Sung;Park, Yong-Hee;Lee, Yong-Hee;Shu, Myung-Gyo
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.351-354
    • /
    • 2005
  • The removal of 1,4-dioxane and the biodegradability enhancement of dioxane contaminated water was investigated using $O_3-H_2O_2$ based advanced oxidation process. Experiments were conducted using a bubble column reactor under different dioxane and peroxide concentrations as well as PH. The $O_3-H_2O_2$ process effectively converted dioxane to more biodegradable intermediates and increased the biodegradability and average oxidation state of dioxane in the solution.

  • PDF

An Experimental investigation on the dependation characteristics of CN/CV cables : dependence on the materials and curing process (배전용 CN/CV 케이블의 절연재료 및 가교방식별 열화특성연구)

  • Kim, H.J.;Choi, Y.H.;Ahn, Y.K.;Kim, K.S.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.969-972
    • /
    • 1992
  • It is shown that the ac breakdown strength, treeing phenomena, oxidation level, and crystallinity of unaged and aged distribution CV cables vary with XLPE insulations (characterizing anti-oxidation) and curing process. The maximum size of bow-tie tree in insulation influenced on the decrease of ac breakdown strength and the increase of oxidation level and crystallinity of XLPE according to aging time lead to increase the size and density of bow-tie trees.

  • PDF

Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography (비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Kim, Tack-Hyun;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Three Dimensional Adaptive Mesh Generator for Thermal Oxidation Simulation (열산화 공정 시뮬레이션을 위한 3차원 적응 메쉬 생성기 제작에 관한 연구)

  • 윤상호;이제희;윤광섭;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.48-51
    • /
    • 1995
  • We have developed the three dimensional mesh generator for three dimensional process simulation using the FEM(Finite Element Method). Tetrahedron element construct the presented three dimensional mesh, which is suitable for the simulation of three dimensional behavior of the LOCOS. The simulation of thermal oxidation is one of the problem in scale downed semiconductor processes. As three dimensional simulators use the huge size of the memory, we use the efficient method that generates the new nodes inside the growing oxide and removes the nodes nearby the SiO2/Si interface in silicon. The resented three dimensional mesh generator was designed to be used in various process simulations, for instance thermal oxidation, silicidation, nitridation, ion implantation, diffusion, and so on.

  • PDF