• 제목/요약/키워드: oxidation characterization

검색결과 404건 처리시간 0.029초

Polypyrrole를 이용한 전기활성 구동기의 제조 및 특성 (Preparation and Characterization of Polypyrrole Electroactive Actuators)

  • 박정태;최혁렬;김훈모;전재욱;남재도
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.826-832
    • /
    • 2001
  • 본 연구에서는 폴리피를 (PPy)/gold/mylar 형태의 두 겹의 전기활성 구동기를 제작하였으며, 도판트의 종류에 따른 굽힘 구동 특성에 관한 연구를 수행하였다. 전도성 고분자는 전기적으로 산화/환원이 될 때에는 도판트의 이동에 의하여 부피 변화를 수반하게 된다. 도판트의 크기에 따라, 서로 다른 구동 특성을 나타내었는데, toluene sulfonate와 같은 작은 크기의 도판트는 산화/환원에 따라 PPy 필름의 내외로 자체 이동이 가능하며, 산화시에 PPy의 팽창이 관찰되었다. 그러나, dodecylbenzenesulfonate와 같은 커다란 도판트가 함유된 PPy는 산화/환원시에는 이들의 이온들은 움직임이 없는 것으로 나타났으며 환원시에 작은 양이온($Na^+$)이 필름내부로 유입되며 부피가 증가하는 현상이 관찰되었다.

  • PDF

Characterization of Lightweight Earthenware Tiles using Foaming Agents

  • Lee, Won-Jun;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho;Hwang, Hae-Jin;Lee, Yong-Ouk
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.473-478
    • /
    • 2015
  • Green bodies of earthenware tile were prepared from a mixture of earthenware tile powder and SiC as forming agents by applying a conventional process. Granule powder for tile samples was prepared using the spray drying method with commercial earthenware raw material with a quantity of SiC of 0.3 wt%. The applied pressure was $250kg{\cdot}f/m^2$ and the firing temperature was $1050-1200^{\circ}C$. The effects of the SiC particle size and sintering temperature on the open porosity and total porosity were investigated and the correlative mechanism was also discussed. While total porosity was not significantly changed by decreasing the SiC particle size, the open porosity showed a gradual decrease, which represents an increase of the closed porosity. As the sintering temperature increased, coarsening was made among the pores due to excessive oxidation. The volume shrinkage and bending strength were demonstrated for the sintered tile samples. The sintered bulk density was also measured to determine the weight reduction value.

R.F magnetron sputtering법으로 제조된 TiAlN 코팅 층의 열처리 특성 (Characterization of TiAlN Coated Layer with Heat Treatment Prepared by R.F Magnetron Sputtering)

  • 송동환;양권승;이종국
    • 열처리공학회지
    • /
    • 제19권4호
    • /
    • pp.225-229
    • /
    • 2006
  • TiAlN coatings are available in various industry fields as a wear resistant coating for high-speed machining, due to its high hardness, excellent oxidation and corrosion resistance. The corrosion resistance of TiAlN multilayer coatings is better than that of single TiN coatings. Most of TiAlN coated layers were formed by heat treatment of coating layers with a non-stoichiometric $Ti_xAl_{1-x}N$. In this study, TiAlN coated layer was prepared by R.F magnetron sputtering and investigated the thermal behavior for heat treatment at various temperature in tube furnace. The formation of large particles with porous microstructure and phase change from HCP to FCC were observed on coated layer during heat treatment over $850^{\circ}C$ and it reduced the corrosion resistance of coated TiAlN layers.

Preparation and Characterization and Visible Light Photocatalytic Activity of Fe-Treated AC/TiO2 Composites for Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.621-626
    • /
    • 2009
  • Fe-AC/Ti$O_2$ photocatalysts were prepared by a sol-gel method. The photocatalytic properties of Fe-AC/Ti$O_2$ photocatalysts for the purification of water have been investigated. The samples were characterized by scanning electron microscopy (SEM), specific surface area (BET), X-ray diffraction analysis (XRD), and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. It was found that the prepared Fe-AC/Ti$O_2$ composites have an excellent photocatalytic under visible light irradiation. A small amount of Fe ions in the AC/Ti$O_2$ composites could obviously enhance their photocatalytic activity. The high activities of the Fe-AC/Ti$O_2$ composites could be attributed to the results of the synergetic effects of the enhancement of the Fe element, the photocatalytic activity of Ti$O_2$, and the adsorption of AC.

리오셀 표면개질공정을 도입한 ACF 제조 및 특성 (Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process)

  • 조영혁;진영민;이순홍
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

Purification and Characterization of a Methanol Dehydrogenase Derived from Methylomicrobium sp. HG-1 Cultivated Using a Compulsory Circulation Diffusion System

  • Kim, Hee-Gon;Kim, Si-Wouk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.134-139
    • /
    • 2006
  • Methanotrophs are microorganisms that possess the unique ability to utilize methane as their sole source of carbon and energy. A novel culture system, known as the compulsory circulation diffusion system, was developed for rapid growth of methanotrophic bacteria. Methanol dehydrogenase (MDH, EC 1.1.99.8) from Methylomicrobium sp. HG-1, which belongs to the type I group of methanotrophic bacteria, can catalyze the oxidation of methanol directly into formaldehyde. This enzyme was purified 8-fold to electrophoretic homogeneity by means of a 4 step procedure and was found in the soluble fraction. The relative molecular weight of the native enzyme was estimated by gel filtration to be 120 kDa. The enzyme consisted of two identical dimers which, in turn, consisted of large and small subunits in an ${\alpha}_2{\beta}_2$ conformation. The isoelectric point was 5.4. The enzymatic activity of purified MDH was optimum at pH 9.0 and $60^{\circ}C$, and remained stable at that temperature for 20 min. MDH was able to oxidize primary alcohols from methanol to octanol and formaldehyde.

Characterization and Cofactor Binding Mechanism of a Novel NAD(P)H-Dependent Aldehyde Reductase from Klebsiella pneumoniae DSM2026

  • Ma, Cheng-Wei;Zhang, Le;Dai, Jian-Ying;Xiu, Zhi-Long
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1699-1707
    • /
    • 2013
  • During the fermentative production of 1,3-propanediol under high substrate concentrations, accumulation of intracellular 3-hydroxypropionaldehyde will cause premature cessation of cell growth and glycerol consumption. Discovery of oxidoreductases that can convert 3-hydroxypropionaldehyde to 1,3-propanediol using NADPH as cofactor could serve as a solution to this problem. In this paper, the yqhD gene from Klebsiella pneumoniae DSM2026, which was found encoding an aldehyde reductase (KpAR), was cloned and characterized. KpAR showed broad substrate specificity under physiological direction, whereas no catalytic activity was detected in the oxidation direction, and both NADPH and NADH can be utilized as cofactors. The cofactor binding mechanism was then investigated employing homology modeling and molecular dynamics simulations. Hydrogen-bond analysis showed that the hydrogen-bond interactions between KpAR and NADPH are much stronger than that for NADH. Free-energy decomposition dedicated that residues Gly37 to Val41 contribute most to the cofactor preference through polar interactions. In conclusion, this work provides a novel aldehyde reductase that has potential applications in the development of novel genetically engineered strains in the 1,3-propanediol industry, and gives a better understanding of the mechanisms involved in cofactor binding.

저압(低壓) 폭쇄처리(爆碎處理)에 의한 목재주성분(木材主成分)의 분리(分離)·정제(精製) 및 이용(利用) (III) - Lignin의 화학적(化學的) 성상(性狀) 및 이용(利用) - (The Separation, Purification and Utilization of Wood Main Components by Steam Explosion in Low Pressure (III) - Characterization and Utilization of Lignin -)

  • 엄태진;엄찬호;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.45-50
    • /
    • 1996
  • Wood chips of oak(Quercus mongolica) and larch(Larix leptolepis) were treated with low pressure steaming explosion. Main components of exploded wood were separated with hot water and methanol extraction. Crude lignin separated from those extractives were purified and those chemical characteristics were investigated. And also, lignin adhesive was prepared from crude lignin and studied those chemical characteristics. The results can be summarized as follows ; 1. The purified lignin by Bj$\ddot{o}$kman's method from crude lignin is about 30% in exploded oak wood and is about 11% in exploded larch wood as a low amount. 2. The phenolic hydroxyl groups in the purified lignins are little higher than those of MWL and molecular weight distributions of the purified lignins are some lower than that of MWL. 3. Alkaline nitrobenzene oxidation products are very low in the clude lignin but those are increased in the purified lignin 4. The gravity of lignin resins(1.15 and 1.13) are a little lower than that of phenol resin(1.16) and the compressive shearing strength of lignin resins are higher than those of phenol resin.

  • PDF

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning

  • Park, Byung-Dae;Um, In Chul;Lee, Sun-Young;Dufresne, Alain
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.119-129
    • /
    • 2014
  • This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.