• Title/Summary/Keyword: oxidation characterization

Search Result 404, Processing Time 0.027 seconds

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Characterization of the Non-Volatiles and Volatiles in Correlation with Flavor Development of Cooked Goat Meat as Affected by Different Cooking Methods

  • Sylvia Indriani;Nattanan Srisakultiew;Papungkorn Sangsawad;Pramote Paengkoum;Jaksuma Pongsetkul
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.662-683
    • /
    • 2024
  • Thai-Native×Anglo-Nubian goat meat cooked by grilling (GR), sous vide (SV), and microwave (MW), was compared to fresh meat (Raw) in terms of flavor development. Non-volatile [i.e., free amino acids, nucleotide-related compounds, taste active values (TAVs) and umami equivalency, sugars, lipid oxidation, Maillard reaction products] and volatile compounds, were investigated. Notably, inosine monophosphate and Glu/Gln were the major compounds contributing to umami taste, as indicated by the highest TAVs in all samples. Raw had higher TAVs than cooked ones, indicating that heat-cooking removes these desirable flavor and taste compounds. This could be proportionally associated with the increase in aldehyde, ketone, and nitrogen-containing volatiles in all cooked samples. GR showed the highest thiobarbituric acid reactive substances (1.46 mg malonaldehyde/kg sample) and browning intensity (0.73), indicating the greatest lipid oxidation and Maillard reaction due to the higher temperature among all cooked samples (p<0.05). In contrast, SV and Raw exhibited similar profiles, indicating that low cooking temperatures preserved natural goat meat flavor, particularly the goaty odor. The principal component analysis biplot linked volatiles and non-volatiles dominant for each cooked sample to their unique flavor and taste. Therefore, these findings shed light on cooking method selection based on desirable flavor and preferences.

Characterization of 'Biuti' Peach Polyphenoloxidase

  • Belluzzo, Ana Silvia Fidelis;Fleuri, Luciana Francisco;Macedo, Juliana Alves;Macedo, Gabriela Alves
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.878-883
    • /
    • 2009
  • In Brazil canned 'Biuti' peach is a very popular form of this sub-tropical fruit. This production represents an important economic agro-activity in Minas Gerais, Brazil during the summer period, in preparation for the Christmas celebrations. The aim of this work was to characterize the 'Biuti' peach polyphenoloxidase (PPO), since peach products show enzymatic oxidation of the polyphenols by oxidative enzymes, which affects the products during their shelf life. Two different hypothesis for the browning problem in processed peaches were studied: the inadequacy of the blanching treatment and the presence of a latent phenolase in the peaches. The PPO was characterized: pH optimum (5.5) and stability (5.5-6.5); optimum temperature at $20^{\circ}C$ and 80% of the activity retained after 30 min at $15-40^{\circ}C$. The test for the presence of latent PPO in the processed and canned peaches was negative. Ascorbic acid, ${\beta}$-mercaptoethanol, sodium metabisulfite, and cysteine were efficient in inhibiting the PPO.

Overexpression, Purification, and Biochemical Characterization of the Thermostable NAD-dependent Alcohol Dehydrogenase from Bacillus stearothermophilus

  • Shim, Eun-Jung;Jeon, Sang-Hoon;Kong, Kwang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.738-744
    • /
    • 2003
  • The gene ADH encoding NAD-dependent alcohol dehydrogenase from Bacillus stearothennophilus was cloned and overexpressed as a GST fusion protein at a high level in Escherichia coli. The expressed fusion protein was purified simply by glutathione affinity chromatography. GST fusion protein was then cleaved by thrombin, while soluble enzyme was further purified by glutathione affinity chromatography. The recombinant enzyme had the same elctrophoretic mobility as the native enzyme from Bacillus stearothennophilus. The recombinant enzyme catalyzed the oxidation of a number of alcohols and exhibited high activities towards secondary alcohols. The $K_m\;and\;V_{max}$ values of the recombinant enzyme for ethanol were 5.11 mM and 61.35 U/mg, respectively. Pyridine and imidazole notably inhibited the enzymatic activity. The activity of the recombinant enzyme optimally proceeded at pH 9.0 and $70^{\circ}C$. The midpoint of the temperature-stability curve for the recombinant enzyme was approximately $68^{\circ}C$, and the enzyme was not completely inactivated even at $85^{\circ}C$. The recombinant enzyme showed a high resistance towards denaturing agents (0.05% SDS, 0.1 M urea). Therefore, due to its stability and relatively broad substrate specificity, the recombinant enzyme could be utilized in bio-industrial processes and biosensors.

Characterization of the ultra thin films of silicon oxynitride deposited by plasma-assisted $N_2O$ oxidation for thin film transistors

  • Hwang, Sung-Hyun;Jung, Sung-Wook;Kim, Hyun-Min;Kim, Jun-Sik;Jang, Kyung-Soo;Lee, Jeoung-In;Lee, Kwang-Soo;Jung, Won-June;Dhungel, S.K.;Ghosh, S.N.;Yi, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1462-1464
    • /
    • 2006
  • Scaling rules for TFT application devices have led to the necessity of ultra thin dielectric films and high-k dielectric layers. In this paper, The advantages of high concentration of nitrogen in silicon oxide layer deposited by using $N_2O$ in Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) is investigated using X-ray energy dispersive spectroscopy (EDS). We have reported about Ellipsometric measurement, Capacitance - Voltage characterization and processing conditions.

  • PDF

Oxidation characterization of VOCs over noble metal catalyst using water treatment (Water 수처리를 이용한 귀금속 촉매의 VOCs 산화특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.120-129
    • /
    • 2005
  • Volatile organic compounds (VOCs) have been recognized as major contributor to air pollution. The catalytic oxidationis is one of the most important processes for VOCs destruction due to the possibility getting high efficiency at low temperature. In this study, monometallic Pt, Ir and bimetallic Pt-Ir were supported to $TiO_2$. In order to distribute metals uniformly, $H_2O-H_2$ treatment method was used. Xylene, toluene and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS, and TEM analysis. Pt catalyst showed higher conversion than Ir catalyst and Pt-Ir bimetallic catalyst showed the highest conversion. The catalysts prepared by $H_2O-H_2$ treatment had better VOC's conversion than that of nothing treatment. In the VOCs oxidation, Pt-Ir bimetallic catalysts had multipoint active sites, so it improved the range of Pt metal state. Therefore, bimetallic catalysts showed higher conversion of VOCs than monometallic ones. $H_2O-H_2$ treatment effected an uniform distribution of Pt particles. In VOCs oxidation was found to follow first order reaetion kinetics. The activation energy of $H_2O-H_2$ treatment catalysts was lower than that of untreated ones. In this study, the a small amount of Ir was used with Pt to promote the oxidation conversion of VOCs.

The Formation of ConTiOn+2 Compounds in CoOx/TiO2 Catalysts and Their Activity for Low-Temperature CO Oxidation (CoOx/TiO2 촉매상에 ConTiOn+2 화합물의 생성과 저온 CO 산화반응에 대한 촉매활성)

  • Kim, Moon-Hyeon;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.933-941
    • /
    • 2008
  • The formation of $Co_nTiO_{n+2}$ compounds, i.e., $CoTiO_3$ and $CO_2TiO_4$, in a 5wt% $CoO_x/TiO_2$ catalyst after calcination at different temperatures has been characterized via scanning electron microscopy (SEM), Raman and X-ray photoelectron spectroscopy (XPS) measurements to verify our earlier model associated with $CO_3O_4$ nanoparticles present in the catalyst, and laboratory-synthesized $Co_nTiO_{n+2}$ chemicals have been employed to directly measure their activity profiles for CO oxidation at $100^{\circ}C$. SEM measurements with the synthetic $CoTiO_3$ and $CO_2TiO_4$ gave the respective tetragonal and rhombohedral morphology structures, in good agreement with the earlier XRD results. Weak Raman peaks at 239, 267 and 336 $cm^{-1}$ appeared on 5wt% $CoO_x/TiO_2$ after calcination at $570^{\circ}C$ but not on the catalyst calcined at $450^{\circ}C$, and these peaks were observed for the $Co_nTiO_{n+2}$ compounds, particularly $CoTiO_3$. All samples of the two cobalt titanate possessed O ls XPS spectra comprised of strong peaks at $530.0{\pm}0.1$ eV with a shoulder at a 532.2-eV binding energy. The O ls structure at binding energies near 530.0 eV was shown for a sample of 5 wt% $CoO_x/TiO_2$, irrespective to calcination temperature. The noticeable difference between the catalyst calcined at 450 and $570^{\circ}C$ is the 532.2 eV shoulder which was indicative of the formation of the $Co_nTiO_{n+2}$ compounds in the catalyst. No long-life activity maintenance of the synthetic $Co_nTiO_{n+2}$ compounds for CO oxidation at $100^{\circ}C$ was a good vehicle to strongly sup port the reason why the supported $CoO_x$ catalyst after calcination at $570^{\circ}C$ had been practically inactive for the oxidation reaction in our previous study; consequently, the earlier proposed model for the $CO_3O_4$ nanoparticles existing with the catalyst following calcination at different temperatures is very consistent with the characterization results and activity measurements with the cobalt titanates.

Photo-oxidation of Aqueous Humic Acid using TiO2 Sols-Characterization of Humic Acid in the Chemical Oxidation Treatment(I)- (TiO2 졸을 이용한 수중 Humic Acid의 광산화-화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구(I)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Kim, Mi Sun;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1073-1081
    • /
    • 2000
  • The photo-oxidation of an aqueous humic acid solution using $TiO_2$ sols. which is transparent in visible range, was studied. The $TiO_2$ sols were prepared by a process wherein hydrogen peroxide was added to a gel of $TiO(OH)_2$ originated from hydrolysis of $TiCl_4$, and the resulting titanium peroxo solution(TPS) was heated. The concentration of $TiO_2$ used for photo-oxidation was about 100ppm, determined by comparing the photoluminescence(PL) intensity measured as a function of $TiO_2$ concentration. $TiO_2$ sols aged at $100^{\circ}C$ for more than 12h were found to exhibit a maximum rate in photocatalytic decomposition of humic acid. and the efficiency was better than that of Degussa P25. In addition, the resulting aqueous humic acid after photocatalytic decomposition with sols had an excellent transmittance of visible light, while that treated with Degussa P25 was still turbid. caused by $TiO_2$ particles.

  • PDF

Effect of titanium surface microgrooves and thermal oxidation on in vitro osteoblast responses (마이크로그루브 및 열산화 복합 티타늄 표면의 골아세포분화 증진효과)

  • Seo, Jin-Ho;Lee, Richard sungbok;Ahn, Su-Jin;Park, Su-Jung;Lee, Myung-Hyun;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.198-206
    • /
    • 2015
  • Purpose: We aimed to investigate the effect of combined various microgrooves and thermal oxidation on the titanium (Ti) and to evaluate various in vitro responses of human periodontal ligament cells (PLCs). Materials and methods: Grade II titanium disks were fabricated. Microgrooves were applied on titanium discs to have $0/0{{\mu}m}$, $15/3.5{{\mu}m}$, $30/10{{\mu}m}$, and $60/10{{\mu}m}$ of respective width/depth by photolithography. Thermal oxidation was performed on the microgrooves of Ti substrata for 3 h at $700^{\circ}C$ in air. The experiments were divided into 3 groups: control group (ST), thermal oxidation group (ST/TO), and combined microgrooves and thermal oxidation group (Gr15-TO, Gr30-TO, Gr60-TO). Surface characterization was performed by field-emission scanning microscopy. Cell adhesion, osteoblastic differentiation, and mineralization were analyzed using the bromodeoxyurdine (BrdU), Alkaline phosphatase (ALP) activity, and extracellular calcium deposition assays, respectively. Statistical analysis was performed using the oneway analysis of variance and Pearson's bivariate correlation analysis (SPSS Version 17.0). Results: In general, the combined microgrooves and thermal oxidation group (Gr15-TO, Gr30-TO, Gr60-TO) showed significantly higher levels compared with the control (ST) or thermal oxidation (ST-TO) groups in the BrdU expression, ALP activity, and extracellular calcium deposition. Gr60-TO group induced highest levels of cell adhesion and osteoblastic differentiation. Conclusion: Within the limitation of this study, we conclude that the Ti surface treatment using combined microgrooves and thermal oxidation is highly effective in inducing the cell adhesion andosteoblastic differentiation. The propose surface is also expected to be effective in inducing rapid and strong osseointegration of Ti oral implants.

Synthesis and Characterization of Lithium Dual Complex Grease (Lithium Dual Complex 그리이스의 합성 및 특성연구)

  • 최웅수;권오관;문탁진;유영홍
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.80-87
    • /
    • 1985
  • Lithium dual complex grease was prepared through the second continuous saponification reaction of a complex gellant system whose essential components comprised of a selected hydroxy fatty acid, lithium hydroxide monohydrate and boric acid to have a fiber structure of chemical, thermal and mechanical stability at high temperatures. An optimum amount of complex gellant was found to be 14% (NLGI #2), and an addition of castor wax of 1.5% provided an excellent performance properties, especially. The oil separation, oxidation stability, water wash-out property, shear stability, extreme pressure and wear property of thus prepared were tested by the ASTM and KS methods, and a characteristic result was obtained.