• Title/Summary/Keyword: oxic condition

Search Result 50, Processing Time 0.03 seconds

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

A Study on the Removal of Nitrogen and Phosphorus Depending on Existence of Cilia Media in Sewage in Anaerobic-Anoxic-Oxic Process ($A_2O$공정에서의 섬모상 담체 사용 유무에 따른 하수의 질소 . 인 제거에 관한 연구)

  • 박태진;이정민;송경석;조일형;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.69-75
    • /
    • 2000
  • This study was carried out to investigate the removal of nitrogen and phosphorus in municipal sewage according to the variation of volumetric ratio in the reactor. It also was performed to provide basic data necessary to the development and improvement of the process which is Anaerobic-Anoxic-Oxic(A2O). In the removal of BOD and COD, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process. In most cases, nitrogen and phosphorus removal efficiency of the process using the cilia media was superior to that of the process which didn't use the media. In the removal of T-N and T-P, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process.

  • PDF

Sediment Release Rate of Nutrients from Namyang Reservoir (남양호 퇴적물에서 영양염류 용출 특성 분석)

  • Cho, Young-Cheol;Chung, Se-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1345-1352
    • /
    • 2007
  • To predict the effects of nutrient releasing on the water quality of Namyang Reservoir, nutrient releasing rates from sediments in oxic and anoxic conditions were estimated in a small microcosm. Organics and nitrogens were not released. The releasing pattern of inorganic phosphate and total phosphorus was depend on the oxygen concentration. The releasing rate of inorganic phosphate and total phosphorus in oxic condition was $1.01\sim2.48$ and $2.14\sim3.54$ mg-P/$m^2$/day, respectively. It was high in the upstream sediments indicating the particles containing easily degradable organic compounds are flowed into the area. Because the depth of Namyang Reservoir at the downstream adjacent to the Dam is $7\sim14$ m, the condition of most area of sediment surface will be oxic. Based on these results, the appropriate counterplans are required to reduce phosphorus release in oxic conditions to control water pollution.

Correlation of Releases of Nutrient Salts in Sediment with Vicinal Oxic Conditions (퇴적물의 영양염류 용출과 호기적 조건과의 상관성 분석)

  • Cho, Dae-Chul;Lee, Eun-Mi;Park, Byung-Gi;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.845-855
    • /
    • 2011
  • The aim of this paper is to correlate the release characteristics of marine and lake sediment with their vicinal oxic conditions. We performed lab-scale simulation experiments using field sediment and water in order to compare the release concentrations and the release rates one another. To provide a few different kinds of oxic environments we used natural air flow and some oxygen releasing compounds such as $CaO_2$ and $MgO_2$. In case of phosphates, in each oxic condition, removal of phosphorus via biological activity and that via salt precipitation with the metal ions lowered the release rates. The behavior of the nitrogen-origin salts seemed to greatly depend on the typical biological actions - growth of biomass, nitrification, and partial denitrification. Generally speaking, the control of releases of $NH_3$-N, $PO_4$-P, T-N and T-P was successful under the oxic conditions meanwhile COD, nitrates and nitrites were difficult to reduce the releases into the bulk water because of the considerable microbial oxidation. Based on typical diffusive mass transfer kinetics the changes of concentrations of the nutrients were computed for qualitative and quantitative comparisons.

Effect of Bioaugmentation on Performance of Intermittently Aerated Sewage Treatment Plant (Bioaugmentation이 간헐폭기 오수처리장치의 운전효율에 미치는 영향)

  • Jeong, Byung-Gon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.233-239
    • /
    • 2008
  • In order to improve reactor performance of existing sewage treatment plants, the feasibility of enhancing reactor performance by bioaugmentation using EM as bioaugmentation agent and the effects of anoxic: oxic time ratio on reactor performance were investigated. Continuous and intermittent aeration modes were compared under the 6 hr of HRT. Three different types of intermittent aeration modes, that is, 15 min, of anoxic:45 min of oxic, 30 min of anoxic: 30 min of oxic, and 45 min of anoxic: 15 min oxic respectively were chosen as test modes to study the effects of anoxic : oxic time ratios on reactor performance. The optimum anoxic: oxic time ratio was 30 min:30 min when considering simultaneous removal of organic, nitrogen and phosphorus. When applying EM into a continuously aerated reactor under the varying dosing rates of 50-200 ppm, reactor performance in terms of organic and nitrogen removal efficiencies was not improved at all. Nitrogen removal efficiency was increase when the EM dosing rate was increased. However the degree of improvement was slight when the EM was injected above 100 ppm. However optimum phosphorus removal was found at the EM dosing of 200 ppm. Thus it was found that optimum injection concentration of EM is 200 ppm. It is apparent that putting EM into a sewage treatment plant significantly affects the T-N removal efficiency of the reactor by enhancing denitrification efficiency especially in operational conditions of relatively long anoxic periods. To achieve reciprocal condition in a reactor with intermittent aeration it is necessary to enhance the reactor performance by EM injection. In the case of modifying existing continuously aerated reactors into intermittent aerated reactors, it is obvious that operating costs of aeration would be reduced by reducing aeration time when compared with existing conventional sewage treatment plants.

The Estimating an Effect of Rapid Flux Increase to a Membrane in the Intermittent Aeration MBR Process Using Alum Treatment (응집제를 활용한 간헐포기 MBR공정에서 순간플럭스 증가가 분리막에 미치는 영향 평가)

  • Choi Song-Hyu;Cho Nam-un;Han Myong Su
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2005
  • By supplying air intermittently in various mode, the effects of oxic/anoxic time ratio and air scrubbing in aeration condition on the membrane flux and permeability were investigated. When suction pump stops, vacuum pressure remains inside the suction pump. Therefore, the effect of remaining vacuum pressure in the suction pump on fouling of membrane was investigated. The effect of EPS (Extra cellular Polymeric Substance) which is generated due to the long SRT and high concentration of MLSS and the dose of coagulant on the membrane were also investigated. The suitable oxic/anoxic time ratio for the best removal efficiency of organic matter and nitrogenous matter was 40 minutes (Oxic) : 20 minutes (Anoxic). At this time ratio, alum was dosed into the aeration tank. The result of dosing alum was that the concentration of alum solution might affect nitrification and denitrification. To remove 1 mg/L of phosphorus in MBR process, it needs 0.75 mg/L of alum solution.

Degradation Characteristics of Algae Coagulated with Poly Aluminum Chloride by Thermophilic Oxic Process (고온·호기법을 이용한 Poly Aluminum Chloride에 의해 응집된 조류의 분해특성)

  • Yang, Jae-Kyung;Choi, Kyung-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The biodegradation of algae coagulated with poly aluminum chloride(PAC) was investigated by using the thermophilic oxic process. The compositions of coagulated algae were 83.5% of water content, 24.6% of ash, 32% of organic carbon with in total solid, respectively. In present study, food waste oil was used for the increment of calorie of mixtures in order to accelate the microbial activity. As a result, the maximum temperature of mixtures was higher than $50^{\circ}C$ when the mixing ratio of food oil was over 10%. However the temperature indicated the lower than $50^{\circ}C$ when conditions of no mixing with waste food oil, and 5% of mixing ratio. Therefore, the optimum condition was 10% of the mixing ration at $217l{\cdot}m^{-3}{\cdot}min^{-1}$ of air supply rate. The conversion efficiency of carbon was highest as 92% at the optimum condition. And then water was evaluated from imxture without accumulation at 10% of mixing ratio. The thermophilic oxic process well conducted that is good process for the treatment of waste algae without effluents however it has to consider the retreatment of accumulated aluminum in the reactor.

  • PDF

Characteristics of Nutrient Removal with Variation of the Anoxic-Oxic Phase Repetition in Sequencing Batch Reactor Process (SBR공정의 무산소-호기 구간반복에 따른 영양염류 제거 특성)

  • Lee, Jaekune;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • This study was performed to investigate the characteristics of nutrient removal by Sequencing Batch Reactor (SBR) system, which could achieve high removal efficiencies of nitrogen and phosphorus and make it possible convenient management and operation. In this study, dissolved oxygen (DO), chemical oxygen demand (COD), nitrogen, and phosphorus in SBR system were examined by variation of anoxic-oxic phase repetition in order to optimize an operational method. The 1~4 times of anoxic-oxic phases (Run 1~4) were repeated during 1 cycle operation period. As the repetition frequency increased, it was more difficult to maintain DO condition enough for denitrification. The SBR system showed high COD removal efficiency more than 91% regardless of operational condition. About 68% of nitrogen removal rate was obtained in conditions of 2 or 3 times repetition of anoxic phases, in which NOx-N among discharged total nitrogen account for more than 99%. Approximately 40% of phosphorus was eliminated in the conditions of 1~3 times of anoxic phase repetition.

  • PDF

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1958-1965
    • /
    • 2008
  • A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.

Production of Polyhydroxyalkanoates (PHAs) from Sequencing Batch Reactor Using Synthetic Wastewater (연속회분식 처리시스템에서 인공하수를 이용한 Polyhydroxyalkanoates (PHAs)의 생산)

  • Son, Jae-hyup;Cha, Sang-Hyeop;Park, Jun-mo;Park, Hung-suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.363-370
    • /
    • 2015
  • The production of polyhydroxyalkanoates (PHAs) using Sequencing Batch Reactor (SBR) was investigated. The experiments were performed in two fabricated SBRs (4 L) of different oxidation state. Synthetic wastewater was used as substrate, using C/N/P ratio of 42:10:1. SBR 1 and SBR 2 were operated in aerobic dynamic feeding (ADF) and anaerobic/oxic dynamic feeding (AODF) condition, respectively. ADF provide feast and famine in aerobic condition, while AODF in anaerobic/oxic condition. PHAs production was found high in AODF than AOF. Maximum PHAs content of 40.0% (w/w)of biomass were produced in AODF mode. Produced PHAs structural and thermal property were good.