• Title/Summary/Keyword: oxalate

Search Result 406, Processing Time 0.024 seconds

Development of High Viscosity Pulping Method for Korean Paper (I) - Atmospheric Pressure Pulping Characteristics of Paper Mulberry White Bast - (고점도 펄프를 위한 새로운 한지 펄프화법의 개발(제1보) - 닥나무 백피의 상압 펄프화 특성 -)

  • Lee, Sang-Hyun;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • Pulping of paper mulberry (Broussonetia kazinoki) white bast has been examined by novel atmospheric pressure pulping methods. The viscosity of pulp has been found to be highly sensitive and variable with pulping methods. Therefore, selections of pulping chemicals and conditions are very important. Two kinds of pulping procedures were employed for the high viscosity pulp manufacturing. The one is ammonium oxalate treatment and the other is sodium chlorite and acetic acid treatment. Not only chemical components and pulp yields which of paper mulberry white bast but also water retention value (WRV), whiteness index, yellowness index, and colors of every pulp were examined. The hot water, 1% NaOH, and ethanol-benzene extractives which of paper mulberry white bast were 4.48%, 28.45%, and 2.84%, respectively. The contents of holocellulose, lignin, and ash were 90.66%, 1.05%, and 2.18%, respectively. In the pulp yields, group 1 which treated with only ammonium oxalate were 77.04-81.71%, group 2 which treated with ammonium oxalate and acidified sodium chlorite separately and washed between first and second stages were 64.15-83.90%, group 3 which treated with ammonium oxalate and acidified sodium chlorite separately and not washed between first and second stages were 57.35-73.17%, and group 4 which treated with mixed ammonium oxalate and acidified sodium chlorite were 66.58-68.43%. The pulps treated with acidified sodium chlorite showed high whiteness index, but the pulps treated with only ammonium oxalate showed high yellowness index. Variations in the combinations of treatments resulted in different pulp characteristics.

Studies on decomposition behavior of oxalic acid waste by UVC photo-Fenton advanced oxidation process

  • Kim, Jin-Hee;Lee, Hyun-Kyu;Park, Yoon-Ji;Lee, Sae-Binna;Choi, Sang-June;Oh, Wonzin;Kim, Hak-Soo;Kim, Cho-Rong;Kim, Ki-Chul;Seo, Bum-Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1957-1963
    • /
    • 2019
  • A UVC photo-Fenton advanced oxidation process (AOP) was studied to develop a process for the decomposition of oxalic acid waste generated in the chemical decontamination of nuclear power plants. The oxalate decomposition behavior was investigated by using a UVC photo-Fenton reactor system with a recirculation tank. The effects of the three operational variables-UVC irradiation, H2O2 and Fenton reagent-on the oxalate decomposition behavior were experimentally studied, and the behavior of the decomposition product, CO2, was observed. UVC irradiation of oxalate resulted in vigorous CO2 bubbling, and the irradiation dose was thought to be a rate-determining variable. Based on the above results, the oxalate decomposition kinetics were investigated from the viewpoint of radical formation, propagation, and termination reactions. The proposed UVC irradiation density model, expressed by the first-order reaction of oxalate with the same amount of H2O2 consumption, satisfactorily predicted the oxalate decomposition behavior, irrespective of the circulate rate in the reactor system within the experimental range.

Isolation, Characterization and Numerical Taxonomy of Novel Oxalate-oxidizing Bacteria

  • Sahin, Nurettin;Gokler, Isa;Tamer, Abdurrahman
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.109-118
    • /
    • 2002
  • The present work is aimed at providing additional new pure cultures of oxalate utilizing bacteria and its preliminary characterization for further work in the field of oxalate-metabolism and taxonomic studies. The taxonomy of 14 mesophilic, aerobic oxalotrophic bacteria isolated by an enrichment culture technique from soils rhizosphers, and the juice of the petiole/stem tissue of plants was investigated. Isolates were characterized with 95 morphological, biochemical and physiological tests. Cellular lipid components and carotenoids of isolates were also studied as an aid to taxonomic characterization. All isolates were Gram-negative, oxidase and catalase positive and no growth factors were required. In addition to oxalates, some of the strains grow on methanol and/or formate. The taxonomic similarities among isolates, reference strains or previously reported oxalotrophic bacteria were analysed by using the Simple Matching (S/ sub SM/) and Jaccard (S$\_$J/) Coefficients. Clustering was performed by using the unweighted pair group method with arithmetic averages (UPGMA) algorithm. The oxalotrophic strains formed five major and two single-member clusters at the 70-86% similarity level. Based on the numerical taxonomy, isolates were separated into three phenotypic groups. Pink-pigmented strains belonged to Methylobacterium extorquens, yellow-pigmented strains were most similar to Pseudomonas sp. YOx and Xanthobacter autorophicus, and heterogeneous non-pigmented strains were closely related to genera Azospirillum, Ancylobacter, Burkholderia and Pseudomonas. New strains belonged to the genera Pseudomonas, Azospirillum and Ancylobacter that differ taxonomically from other known oxalate oxidizers were obtained. Numerical analysis indicated that some strains of the yellow-pigmented and nonpigmented clusters might represent new species.

Electrical Properties of Synthesis LSCF Cathode by Modified Oxalate Method (Modified Oxalate Method로 의해 합성한 LSCF Cathode의 전기적 특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Jung, Ji-Mi;Park, Sang-Sun;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.30-31
    • /
    • 2006
  • The LSCF cathode for Solid Oxide Fuel Cell was investigated to develop high performance unit cell at intermediate temperature by modified oxalate method with different electrolyte. The LSCF precursors using oxalic acid, ethanol and $NH_4OH$ solution were prepared at $80^{\circ}C$, and pH was controlled as 2, 6, 7, 8, 9 and 10. The synthesis precursor powders were calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. Unit cells were prepared with the calcined LSCF cathode, buffer layer between cathode and each electrolyte that is the LSGM, YSZ, ScSZ and CeSZ. The synthesis LSCF powders by modified oxalate method were measured by scanning electron microscope and X-ray diffraction. The interfacial polarization resistance of cell was characterized by Solatron 1260 analyzer. The crystal of LSCF powders show single phase at pH 2, 6, 7, 8 and 9, and the average particle size was about $3{\mu}m$. The electric conductivity of synthesis LSCF cathode which was calcined at $1200^{\circ}C$ shows the highest value at pH 7. The cell consist of GDC had the lowest interfacial resistance (about 950 S/cm@650) of the cathode electrode. The polarization resistance of synthesis LSCF cathode by modified oxalate method has the value from 4.02 to 7.46ohm at $650^{\circ}C$. GDC among the electrolytes, shows the lowest polarization resistance.

  • PDF

Study on the Changes of Dentinal Hypersensitivity and Surface Characteristics Following the Various Root Treatment (수종의 치근면 처치 방법에 따른 상아질 지각 과민 변화 및 표면 특성에 관한 연구)

  • Kwon, Soon-Young;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 1999
  • Exposure of the root surface due to gingival recession after periodontal surgery, elicit pain response when exposed to mechanical, heat, chemical or osmotic irritation. Especially patients treated with periodontal surgery, show high frequency. There have been reports that the 1 out of 7 patients complains of dentinal hypersensitivity. There have been many studies on the clinical effects of various materials on the treatment of dentinal hypersensitivity. The purposes of this study were to evaluate the effect of sodium chloride and potassium oxalate and to observe the relationship between the dentinal hypersensitivity and surface characteristics such as dentinal tubule size and number. This study included 20 teeth which were scheduled for extraction and had no pulpal disease. These teeth were divided into Root planing group, EDTA group, NaCl group and Oxalate group. Dentinal hypersensitivity is measured by tactile, pressured air and cold water using NRS (Numerical Rating Scales). Teeth were extracted under local anesthesia and each specimen was sectioned to a size about 3 X 5 mm and was examined under the scanning electron microscope (X2,000) The results were as follows, 1. The EDTA group exhibited significantly increased dentinal hypersensitivity comparing with the other groups. 2. The NaCl and Oxalate groups showed significantly reduced dentinal hypersensitivity comparing with the EDTA group. 3. As a method for dentinal hypersensitivity measurement, it was presumed thet tactile sensitivity test was not sensitive method but air blast test and cold water test were adequate method. 4. In a SEM study, the root planing group exhibited amorphous smear layer and showed no dentinal tubule orifice, but the EDTA group showed the large number of dentinal tubules. On the other hand, the NaCl and Oxalate groups did not show exposed dentinal tubules. The NaCl group showed more rough root surface than the EDTA group, and the Oxalate group showed many participates to be presumed as calcium oxalate particle. As the results from this study, root planing couldn't expose the dentinal tubule and NaCl and potassium oxalate occluded exposed dentinal tubule effectively. Dentinal hypersensitivity has close relationship with the exposure of dentinal tubules, especially with it's size and number.

  • PDF

Influence of Calcium Supply on the Growth, Calcium and Oxalate Contents, Mineral Nutrients and Ca-oxalate Crystal Formation of Cucumber (오이생육, 칼슘, 옥살산 및 무기성분 함량 및 칼슘-옥살산염 형성에 대한 칼슘처리 효과)

  • Sung, Jwa-Kyung;Lee, Su-Yeon;Lee, Ye-Jin;Kim, Rog-Young;Lee, Ju-Young;Lee, Jong-Sik;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.471-477
    • /
    • 2010
  • Although the roles of calcium in plant are widely known, little is known about on an antagonistic effect of macro elements, oxalate biosynthesis and main shape of crystal in cucumber plant organs. Seeds of cucumber (Cucumis sativus cv. Ijoeunbackdadagi) were germinated in perlite tray supplied with distilled-deionized water. Seedlings were transplanted into aerated containers with a half strength of Ross nutrient solution. Ca levels treated in media were as follows; No-Ca, $Ca(NO_3)_2$ 0.25, 1.25 and 2.5 mmol $L^{-1}$, and $Ca(NO_3)_2$ 2.5 mmol $L^{-1}$ + $CaCl_210$, 25 and 50 mmol $L^{-1}$. Ca-deficient and -excessive conditions severely reduced cucumber growth, as compared to the control, and adversely affected an accumulation of macro elements (N, P, K, and Mg). Calcium favorably induced oxalate (acid-soluble) synthesis in leaves and roots of cucumber plant, but not in stem. Acid-soluble oxalate contents in leaves proportionally increased with Ca supply levels (0.91, P<0.001), however, this pattern was not observed in stem and roots. Ca-oxalate crystal formation and compositional analysis were examined using SEM-EDS technique in cucumber leaves. The main type of crystal revealed a prismatic crystal and main components were Ca, Na and Cl.