• Title/Summary/Keyword: overpotential

Search Result 162, Processing Time 0.029 seconds

A study on the fabrication of porous cermet electrode for molten carbonate fuel cell anode (용융탄산염 연료전지 양극용 다공성 cermet 전극제조에 관한 연구)

  • Lee, K. H.;Chang, D. Y.;Kim, M.;Kang, S. G.
    • Journal of Surface Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.291-298
    • /
    • 1993
  • In order to substitute for porous nickel anode in Molten Carbonate Fuel Cell(MCFC), porous cermet elec-trode was fabricated with Ni and Ni-P coated ceramic powder. Ni and Ni-P were coated by electroless plat-ing method in the nickel solution containing of hydrazine and sodium hypophosphate as a reducing agent. The plating solution was stirred by air and mechanical agitator. Ultrasonic irradiation was applied to the plating bath to improved the effect of agitation and coating speed. Electorde was formed by pressing method and doc-tor blade method followed by sinterd at$ 800^{\circ}C$ for 6 hours in H2 environment. Anode performance test carried out by potentiodynamic polarization technique in the MCFC operating condition and 154-161mA/$\textrm{cm}^2$ as ob-tained as a anode current density at the+100mV overpotential.

  • PDF

Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery (탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과)

  • Kim, Minseong;Ko, Minseong
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

Research Trend in the Development of Electrocatalysts for Water Electrolysis via Interfacial Engineering (계면 제어를 통한 수전해 전기화학 촉매 개발 동향)

  • Minhui Kim;Seonggyu Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.50-55
    • /
    • 2024
  • Hydrogen is attracting much attention as a renewable energy source with high energy density and environmental friendliness. Among various hydrogen production methods, water electrolysis stands out as a clean hydrogen production technique that could lead the future of hydrogen production, as it does not emit carbon, and many studies are currently underway to realize this technology. However, the high overpotential, which increases the cost of hydrogen production, acts as a stumbling block, making the development of electrocatalysts extremely important. This paper aims to summarize and introduce recent research trends in the development of electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction through interfacial engineering, and to deeply discuss the challenges in implementing next-generation water electrolysis devices.

Morphology Construction of Molybdenum Doped Nickel Sulfide Electrocatalyst Induced by NH4F to Promote Hydrogen Evolution Reaction

  • Baikai Zhang;Xiaohui Li;Maochang Liu
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.353-364
    • /
    • 2024
  • Through component regulation and morphological construction, it is of considerable significance to develop high-activity and high-stability electrocatalyst for hydrogen evolution in electrolytic water. In the hydrothermal process, Mo-doped nickel-based sulfide catalysts (Mo-NiS-Fx) with a variety of morphologies (prisms, rods, flakes, and cones) were created by adding NH4F with varying masses. Among these, the flaky Mo-NiS-F1.2 exhibited exceptional performance towards electrochemical hydrogen evolution reaction, surpassing most similar catalysts with an overpotential of 79 mV at 10 mA cm-2 and a Tafel slope of 49.8 mV dec-1. Significantly, Mo-NiS-F1.2 maintained its high activity for hydrogen evolution over 60 h at a current density of 10 mA cm-2, making it suitable for widespread commercial application. According to the experimental findings, an electrocatalyst with a high surface area and a porous structure is better suited to exposing more gas transfer routes and active sites, which would encourage the hydrogen evolution reaction. This study presents a straightforward procedure for creating electrocatalysts with a range of morphologies, which can serve as a model for the creation of catalysts for use in industrial manufacturing.

NiMo LDHs Nanosheets-Coupled V2C MXene-Based Heterocatalyst for Enhanced Overall Water Splitting

  • Deepanshu Malhotra;Duy Thanh Tran;Nam Hoon Kim;Joong Hee Lee
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.286-290
    • /
    • 2024
  • The rapid increase in the demand for energy has put huge pressure on fossil fuels. The continuous overutilization of these existing non-renewable energy sources has been causing severe environmental concerns. In these regards, electrochemical water splitting has gained huge attention for producing green hydrogen, a superior energy source with high gravimetric energy density (120 MJ/kg), as compared with conventional options. Electrochemical water splitting is a viable option for generating green hydrogen. However, the various limitations of state-of the art Pt/C and RuO2- based electrocatalysts has motivated the scientific community to develop novel cathode (hydrogen evolution reaction (HER)) and anode (oxygen evolution reaction (OER)) electrocatalysts. In our present study, we have achieved a new milestone by fabricating the NiMo-based transition metal LDHs coupled V2C MXene support based heterocatalyst. The synergistic impact of NiMo LDHs (corrosion resistance, favorable intrinsic catalytic properties, etc.) and V2C (high electrical conductivity, pseudocapacitive behavior, etc.) has resulted in the HER and OER at smaller overpotential of 135 and 370 mV at the current density of 10 and 30 mA cm-2 in an alkaline (1.0 M KOH) environment.

Changes of discharge voltage of plate-type sodium sulfur batteries in the early charge/discharge cycles (평판형 나트륨 유황 전지의 초기 충방전시 방전전압 변화)

  • Kim, Seong-In;Kim, Heon-Tae;Choi, Hee-Lack;Lim, San-Su-Dae;Yang, Kee-Deok;Beum, Jin-Hyung;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.164-168
    • /
    • 2014
  • The sodium-sulfur batteries which operate at $350^{\circ}C$ have been mainly used in the field of energy storage system. This batteries consist of liquid sodium anode, sulfur cathode and ${\beta}^{{\prime}{\prime}}$-alumina solid electrolyte. The conditioning process for stabilization of the batteries is essential since the cells show considerable fluctuation of discharge voltage at the beginning of discharge/charge cycles. It is found that one of the reasons of the fluctuation is the gradual change of contact area between molten sodium and solid electrolyte.

Carbon Sphere/Fe3O4 Nanocomposite for Li/air Batteries (리튬/공기 이차전지용 카본미소구체/Fe3O4 나노복합체)

  • Park, Chang Sung;Park, Yong Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • In this article, we report the fabrication and characterization of carbon sphere/$Fe_3O_4$ nanocomposite for Li/air batteries. $Fe_3O_4$ nanoparticles are dispersed homogeneously on the surface of carbon spheres in an attempt to enhance the low conductivity of oxide catalyst ($Fe_3O_4$). The carbon sphere/$Fe_3O_4$ nanocomposite could offer wide surface area of $Fe_3O_4$ and increased carbon/catalyst contact area, which lead to enhanced catalytic activity. The electrode employing carbon sphere/$Fe_3O_4$ nanocomposite presented relatively low overpotential and stable cyclic performance compared with the electrode employing carbon sphere.

Simulation of governing equations for direct methanol fuel cell(DMFC) using FEMLAB (FEMLAB를 이용한 직접메탄올 연료전지(DMFC) 지배방정식의 전산모사)

  • Park, Tae-Hyeon;Kim, In-Ho
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2004
  • Direct methanol fuel cell(DMFC) with proton exchange membrane (PEM) has advantages over the conventional power source (e.g. vehicle). DMFC, however, has a problem to be solved such as methanol crossover, high anodic overpotential and limiting current density, etc. The physicochemical phenomena in DMFC can be described by coupled PDEs (partial differential equations), which can be solved by a PDE solver. In this paper, we utilized a commercial software FEMLAB to solve the PDEs. The FEMLAB is one of the software programs available which are developed as a solver for building physics problems based on PDEs and is designed to simulate systems of coupled PDEs which may be 1D, 2D, 3D, non-liner and time dependent. We performed simulation using the Tafel equation as an electrochemical reaction model to analyze methanol concentration profile in DMFC system. We confirm that the rapid decrease of methanol concentration at anodic catalyst layer with the increase of the current density is a main reason of the low performance in DMFC through simulation results.

  • PDF

The Electrochemical Characteristics of Mercapto Compounds on the Copper Electroplating (전기구리도금에 미치는 Mercapto화합물의 전기화학적 특성)

  • Son Sang Ki;Lee Yoo Yong;Cho Byung Won;Lee Jae Bong;Lee Tae Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.160-165
    • /
    • 2001
  • The eletrochemical charateristics of mercapto compound additives on the copper electroplating for semi conductor metalization were investigated. Mercapto compounds including sulfur atom is known that they activate deposition rate in eletroplating. Four different types of mercapto compounds were chosen with different concentration and both the characteristics of plating and throwing power were investigated by electrochemical experiments such as Hull cell test, Haring-Blum cell, cathodic polarization, EQCM(Electrochemical Quartz Crystal Microbalance). 3-Mercapto-1-propanesulfonic acid among 4 different mercapto compounds was regarded as the most proper activator with the results of the mass change of Cu metal deposited on eletrode by cathodic polarization and EQCM. The overpotential was more shifted to 100 mV in the concentration of 20 ppm than the solution with only $Cl^-$ in cathodic scan.