• Title/Summary/Keyword: overheating

Search Result 259, Processing Time 0.026 seconds

Applying Thermal Simulation to the DDI Development of Heat Dissipation Package for High Definition LCD-TV (고해상도 LCD TV 용 DDI 방열 패키지 개발에 열해석 적용)

  • Jung, Chung-Hyo;Yoo, Jae-Wook
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2444-2448
    • /
    • 2007
  • The multi channel of DDI which is the core part of the LCD-TV has been propelled. When multi channel in DDI is introduced, it brings a thermal problem because of the increased power. To solve the thermal problem of the DDI it needs to be investigated each at the package level and module level. It is important to extract the junction temperature(Tj) of DDI clearly from the system level. The objective of this research is to construct a compact model. The compact model is to reduce LCD module including DDI. When the compact model is used, it will be able to easily handle the boundary condition and accurately predict the temperature. Consequently, the temperature of DDI can be calculated easily at the system level. Through this research,we also proposed the cooling plan of DDI for a protection of overheating. The cooling plan was utilized in DDI design.

  • PDF

Permeability Study of Membranes for Separation $H_2$ in Oil (가스센서를 이용한 변압기 절연유중 가스 검출장치의 수소 가스 감지 특성에 관한 연구)

  • Whang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1845-1847
    • /
    • 2004
  • In oil-filled equipment such as transformers, partial discharge or local overheating will precede a final shutdown. Accompanied with such problems is a decomposition of insulating material into gases, which are dissolved into the transformer oil. The gases dissolved in oil can be separated with some membranes based on the differences in permeability of membranes to different gases. This paper discuss the permeability characteristics of several membranes for separation hydrogen gas in oil. With result of this paper, it may become possible to detect fault-related gases from transformer oil and predict incipient failures in the future.

  • PDF

Developement of Gas Detector Dissolved In Transfomer Oil (변압기 절연유중 수소 가스의 검지 시스템 설계)

  • Hwang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1842-1844
    • /
    • 2004
  • In oil-filled equipment such as transformers, partial discharge or local overheating will make insulating material(oil, kraft paper, proclain and wood) be stressed and generate many sort of gases(CO, $CO_2,\;H_2,\;C_2H_4$) which are dissolved in transformer oil. The ratio of this gas can make diagnostic tecchniques of the lifetime of transfomer so, it is important to monitoring $H_2$ gas continuously. This paper developes a system of detecting about $H_2$ gas by using $H_2$ gas sensor, and we describe operation and performance of this system.

  • PDF

Operating Characteristics Study of a Small Gas/Steam Turbine Combined System Using Biogas (바이오가스 연료를 사용하는 소형 가스/증기터빈 복합 발전 시스템의 성능특성 해석)

  • Kang, Do-Won;Shin, Hyun-Dong;Kim, Tong-Seop;Hur, Kwang-Beom;Park, Jung-Keuk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • This study analyzed the influence of firing biogas on the performance and operation of a gas/steam turbine combined system. A reference gas/steam turbine combined system, designed with biogas fuel(57% volumetric methane) was set up and off-design simulation was made to investigate operating characteristics when a couple of operating schemes to mitigate turbine blade overheating were applied. Performance at base-load operation using each scheme was compared and part load operation using the variable inlet guide vane was analysed. Also, differences in operating characteristics and performance caused by changes in the methane content of biogas and ambient temperature were examined.

New Cooling System Design of BLDC Motor for Electric Vehicle Using Computation Fluid Dynamics Modeling

  • Vu, Duc Thuan;Hwang, Pyung
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.318-323
    • /
    • 2013
  • Overheating in electrical motors results in detrimental effects such as degradation of the insulation materials, demagnetization of magnets, increases in Joule losses, and decreases in motor efficiency and lifetime. Thus, it is important to find ways to dissipate heat from the motor and to keep the motor operating at its most efficient temperature. In this study, a new design to guide air flow through a given brushless direct current (BLDC) motor is developed and the design is analyzed, specifically by using computational fluid dynamics (CFD) simulations. The results showed that the temperature distribution in the three proposed models is lower than that in the original model, although the speed of the cooling fan in the original model reaches a very high value of $15{\times}10^3$ rpm. The results also showed that CFD can be effectively used to simulate the heat transfer of BLDC motors.

Numerical estimation on balance coefficients of central difference averaging method for quench detection of the KSTAR PF coils

  • Kim, Jinsub;An, Seok Chan;Ko, Tae Kuk;Chu, Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.25-29
    • /
    • 2016
  • A quench detection system of KSTAR Poloidal Field (PF) coils is inevitable for stable operation because normal zone generates overheating during quench occurrence. Recently, new voltage quench detection method, combination of Central Difference Averaging (CDA) and Mutual Inductance Compensation (MIK) for compensating mutual inductive voltage more effectively than conventional voltage detection method, has been suggested and studied. For better performance of mutual induction cancellation by adjacent coils of CDA+MIK method for KSTAR coil system, balance coefficients of CDA must be estimated and adjusted preferentially. In this paper, the balance coefficients of CDA for KSTAR PF coils were numerically estimated. The estimated result was adopted and tested by using simulation. The CDA method adopting balance coefficients effectively eliminated mutual inductive voltage, and also it is expected to improve performance of CDA+MIK method for quench detection of KSTAR PF coils.

Effects of Electron Beam Heating(EBH) on the Properties of ion Plated Ti(C, N) Films (이온도금된 Ti(C, N)피막의 물성에 대한 전자빔가열 효과)

  • 김치명;고경현;안재환;배종수;정형식
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.267-275
    • /
    • 1995
  • Electron beam can provide convenient way to heat the substrate during Hollow Cathode Discharge (HCD) ion plating of Ti(C, N)films. Densification of columnar structrue is enhanced by longer duration of electron beam heating(EBH). While strong(111) texture is identified always to be formed, the amount of (200) oriented grains which coherently interfaced with carbide particles of the substrate increased with heating(EBH). In turns, these crystallogaphical change lead to the increase of micro hardness and adhesion of coating. Adhesion of Ti(C, N) films increased more dramatically in case of ASP30 substrate of which carbide particles dispersed more finely than M42. Therefore, it could be concluded that both the density of film and interfacial structure can affect the adhesion property. Overheating of substrate could be resulted in low adhesion resistance due to high residual stress developed in the film.

  • PDF

Numerical Study on Heat Transfer of Air-cooling PEMFC in HALE UAV (고고도 무인기 내부의 공랭식 PEMFC 열전달 전산 해석 연구)

  • SONG, MYEONGHO;KIM, KYOUNGYOUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.150-155
    • /
    • 2017
  • Proper cooling of PEM fuel cell stack is essential for the high-performance operation of fuel cell system. Insufficient cooling of the stack can cause significant damage to components due to overheating and also can decrease cell performance by dehydration of the polymer electrolyte. In the present study, we performed a computational analysis to assess the condition of the cooling system to secure the proper temperature in fuel cell stack system for high altitude long endurance (HALE) unmanned aerial vehicle (UAV).

Biophysical Principles of Superficial Heating and Deep Heating Agents (표면 열과 심부 열의 생물학적 원리에 관한 고찰)

  • Park, Kyu-Hyun;Kim, Jae-Yoon;Park, Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.197-203
    • /
    • 2002
  • Heating of injured tissue has been used for centuries for pain relief and reduction of muscle spasm. In physical therapy locally applied heating gents are used not only to promote relaxation and provide pain relief, but they are also used to increase blood flow, to facilitate tissue healing, and to prepare stiff joints and tight muscles for exercise. Superficial heating agents primarily cause in increases in skin and superficial cutaneous tissue temperature. Superficial heating agents such as hot packs, paraffin wax, Deep heating agents, including shortwave diathermy and continuous-wave ultrasound, can increase tissue temperature at depths ranging from 3to 5cm without overheating the skim and subcutaneous tissue.

  • PDF

A Study on the Thermal Analysis of Fire-Resistance Cable using FEM (유한요소법을 이용한 내화전선의 열해석에 관한 연구)

  • 오홍석;이상호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.338-343
    • /
    • 2004
  • In general, the insulation and protective sheaths on electrical conductors are made of combustible substances like PVC, natural or synthetic rubbers, and other organic or synthetic materials. When an electrical fire starts due to overheating of conductors/joints or sparking/arcing, the first thing to ignite is usually the insulation on the cables. When the insulation bums, the produced fumes are very toxic. To solve the problem, we have surely need the fire resistance cable that doesn't bum in a high temperature and emit toxic fume for operating a disaster prevention installation. In this paper, we have simulated the thermal analysis for the fire resistance cable according to the values of current in a overload and a short, and the values of outside flame with the fire resistance cable of the L's company product(600 V, FR-8 : Four Core) using the finite element method(Flux2D).