• Title/Summary/Keyword: overhead crane system

Search Result 41, Processing Time 0.025 seconds

Anti-Sway Control of the Overhead Crane System using HOSM Observer

  • Kwon, Dongwoo;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1027-1034
    • /
    • 2016
  • This paper proposes a sum of squares (SOS) method for anti-swing control of overhead crane system using HOSM (High-Order Sliding-Mode) observer. By representing the dynamic equations of overhead crane as the polynomial dynamic equations via Taylor series expansion, the control input is obtained from the converted polynomial dynamic equations by numerical tool SOSTOOL. Since the actual crane systems include disturbance such as wind and friction, we propose a method to compensate for the disturbance by estimating the disturbance using HOSM observer. Numerical simulations show the effectiveness and the applicability of the proposed method.

Compatibility of the Direction Sign on the Pendant Switch of Overhead Cranes

  • Park, Jae Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • Objective: The aim of this study is to suggest the standard of the direction sign on the pendant switch of overhead cranes which can reduce human errors in control. Background: A great number of crane accidents occur in industries. One of the major causes of the accidents is the mistake in the control of cranes by confusing the orientation of crane movements. Nevertheless, three different direction sign styles, 'East, West, South, North (EWSN)', 'Forward, Backward, Left, Right (FBLR)', and arrows for four directions are used without standardization. Method: An overhead crane simulator was installed for a laboratory experiment. It could move along six directions by the control of a pendant switch. 90 participants were evenly assigned to the three different conditions of direction sign styles. The participants were asked to control the pendant switch according to the continuously appearing 16 direction signs on a monitor ahead. The participants were allowed to refer an orientation sign board on the ceiling representing correct movement directions of the overhead crane simulator. Results: The direction sign style, 'EWSN', showed statistically significant better performance in task completion time and number of errors than the other sign styles. The direction sign style, 'EWSN', adopting the cardinal direction system, made the participants clear in direction controls after customizing to the crane movements. However, the direction sign styles, 'FBLR' and the arrows adopting the relative direction system made conflicts in direction controls due to the egocentric view of human. Conclusion: The direction sign style, 'EWSN', is the most appropriate for the standardization of the direction sign on the pendant switch of overhead cranes. Application: The results of this study can be applied to the standardization of direction sign in the legal notification on the safety certifications of crane manufacturing.

Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어)

  • Lee, Tae-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

Anti-sway and Position 3D Control of the Nonlinear Crane System using Fuzzy Algorithm

  • Lee, Tae-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.66-75
    • /
    • 2002
  • The crane operation used fur transporting heavy loads causes a swinging motion with the loads due to the crane\`s acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and can cause serious damage. Ideally, the purpose of a crane system is to transport loads to a goal position as soon as possible without any oscillation of the rope. Currently, cranes are generally operated based on expert knowledge alone, accordingly, the development of a satisfactory control method that can efficiently suppress object sway during transport is essential. The dynamic behavior of a crane shows nonlinear characteristics. When the length of the rope is changed, a crane becomes a time-varying system thus the design of an anti-sway controller is very difficult. In this paper, a nonlinear dynamic model is derived for an industrial overhead crane whose girder, trolley, and hoister move simultaneously. Furthermore, a fuzzy logic controller, based on expert experiments during acceleration, constant velocity, deceleration, and stop position periods is proposed to suppress the swing motion and control the position of the crane. Computer simulation is then used to test the performance of the fuzzy controller with the nonlinear crane model.

Nonsingular Terminal Sliding Mode Control of Overhead Crane System (오버헤드 크레인 시스템의 비특이성 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1683-1684
    • /
    • 2008
  • In this paper, a hierarchical nonsingular terminal sliding mode controller (TSMC) for overhead crane system using nonsingular terminal sliding surface (NTSS) is proposed, which can drive the error to zero in a finite time. Here, singular problem of controller is solved by NTSS. In addition, the controller has the double layer structure because the system is divided into two hierarchical subsystems. In the first layer, the nonsingular terminal sliding surfaces are hierarchically designed for each subsystem, and in the second layer, the whole sliding surface is designed as the linear combination of nonsingular terminal sliding surfaces. The asymptotic stability of the system is verified by Lyapunov analysis. Finally, we carry out simulations on the overhead crane system to illustrate the effectiveness of the proposed control method.

  • PDF

Position Control of the Trolley and Spreader Using Pole-placement Method (극점배치기법을 이용한 트롤리 및 스프레더의 위치제어)

  • Lee, Tae-Young;Kim, Myun-Hee;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane is derived. and the feedback gain matrix based on the pole-placement method is proposed to supress the swing motion and control the position of the crane. The performance of the controller for the crane model is simulated on the personal computer.

  • PDF

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes (천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발)

  • Lee, Jong-Kyu;Park, Young-Jo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.

Dynamics Analysis and Residual Vibration Control of an Overhead Shuttle System (오버헤드셔틀시스템의 동특성해석 및 잔류진동제어)

  • Piao, Mingxu;Kim, Gyoung-Hahn;Shah, Umer Hameed;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.445-452
    • /
    • 2016
  • This paper discusses the dynamics and control problem of an overhead shuttle system (OSS), which is a critical part of the automated container terminal at a port. The main purpose of the OSS is efficient automated transport function of containers, which also requires high precision and safety. A major difference between the OSS and the conventional container crane is the configuration of the cables for hoisting the spreader. A mathematical model of the OSS is developed here for the first time, which results in an eight-pole system. Also, open loop control methods (trapezoidal and notch-type velocity profiles) are investigated so that the command input to the overhead shuttle produces the minimum possible sway of the payload. Simulation results show that the vibration suppression capability of the OSS is superior to the conventional overhead container crane, which is partially due to the cable configuration.