• 제목/요약/키워드: overexpression

검색결과 1,559건 처리시간 0.031초

보익청뇌탕(補益淸腦湯)이 치매병태(痴?病態) 모델에 미치는 영향(影響) (Effects of Boyikcheungnoy-tang (BYCNT) on inhibition of impairment of learning and memory, and acetylcholinesterase in amnesia mice)

  • 이상룡;고태준
    • 동의신경정신과학회지
    • /
    • 제12궈1호
    • /
    • pp.151-167
    • /
    • 2001
  • Alzheimer's disease(AD) is a progressive neurodegenerative disease, which is pathologically characterized by neuritic plaques and neurofibrillary tangles associated with the acetylchohnesterase, apolipoprotein E and butylcholinesterase, and by mutations in the presenilin genes PS1 and PS2, and amyloid precursor proteins (APPs)'s overexpression. The present research is to examine the inhibition effect of BYCNT on PS-1, PS-2 and APPs's overexpression by detected to Western blotting. To verify the effects of BYCNT on cognitive deficits further, we tested it on the scopolamine(1mg/kg)-induced amnesia model of the mice using the Morris water maze tests, and there was ameliorative effects of memory impairment as a protection from scopolamine. BYCNT only partially blocked the increase in blood serum level of acetylcholinesterase and Uric acid induced by scopolamine, whereas blood glucose level was shown to attenuate the amnesia induced by scopolamine and inreased extracellular serum level compared with only scopolamine injection. In conclusion, studies of BYCNT that has been known as anti-choline and inhibition ablilities of APPs overexpression, this could also be used further as a important research data for a preventive and promising symptomatic treatment for Alzheimer's disease.

  • PDF

GRP94는 thyroglobulin의 folding에 관여한다. (Overexpression of ER Resident Molecular Chaperones and Characterization of Their Interaction with Thyroglobulin in FRTL5 cells.)

  • Seong, Yeon-Mun;Shong, MinHo;Kwon, O-Yu
    • 생명과학회지
    • /
    • 제9권1호
    • /
    • pp.76-83
    • /
    • 1999
  • Endoplasmic reticulum (ER)내에 단백질의 folding과 안정화에 관여하는 단백질을 molecular cha-perone이라고 한다. GRP94 역시 ER내에 존재하는 molecular chaperone으로 알려지고 있지만 갑상선세포에서 단백질의 folding에 관여한다는 증거는 아직 불충분하다. 본 설험은 molecular chaperone을 세포내에서 overexpression시킬 수 있는 system을 확립하였다. 그 중에서 GRP94가 단백질의 folding에 직접적으로 관여한다는 증거를 얻기 위하여, endogenous GRP94를 code한 cDNA를 overexpression vector에 의해서 forced expression시킴으로 신생thyroglobulin의 folding에 직접적으로 관여하는 증거를 immun-oprecipitation으로 증명하였다.

  • PDF

Apoptotic Cell Death in TrkA-overexpressing Cells: Kinetic Regulation of ERK Phosphorylation and Caspase-7 Activation

  • Jung, Eun Joo;Kim, Deok Ryong
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.12-17
    • /
    • 2008
  • The TrkA tyrosine kinase is activated by autophosphorylation in response to NGF, and plays an important role in cell survival, differentiation, and apoptosis. To investigate its role in cell fate determination, we produced stable TrkA-inducible SK-N-MC and U2OS cell lines using the Tet-On system. Interestingly, TrkA overexpression induced substantial cell death even in the absence of NGF, by stimulating ERK phosphorylation and caspase-7 activation leading to PARP cleavage. TrkA-mediated cell death was shown by the annexin-V binding assay to be, at least in part, apoptotic in both SK-N-MC and U2OS cells. Furthermore, the truncated form (p18) of Bax accumulated in the TrkA-induced cells, suggesting that TrkA induces mitochondria-mediated apoptosis. NGF treatment augmented the cell death induced by TrkA overexpression. This TrkA-induced cell death was blocked by the tyrosine kinase inhibitors, K-252a and GW441756. Moreover, TrkA overexpression inhibited long-term proliferation of both the neuronal SK-N-MC cells and the non-neuronal U2OS cells, suggesting a potential role of TrkA as a tumor suppressor.

Construction and Characterization of an Enhanced GFP-Tagged TIM-1 Fusion Protein

  • Qing, Jilin;Xiao, Haibing;Zhao, Lin;Qin, Guifang;Hu, Lihua;Chen, Zhizhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.568-576
    • /
    • 2014
  • TIM-1 (also known as KIM-1 and HAVcr-1) is a type I transmembrane glycoprotein member of the TIM family that may play important roles in innate and adaptive immune responses. The overexpression of proteins associated with membrane proteins is a major obstacle to overcome in studies of membrane protein structures and functions. In this study, we successfully coupled the overexpression of the TIM-1 protein with a C-terminal enhanced green fluorescent protein (GFP) tag in Escherichia coli. To the best of our knowledge, this report is the first to describe the overexpression of human TIM-1 in E. coli. The purified TIM-1-EGFP fusion protein recognized and bound directly to apoptotic cells and did not to bind to viable cells. Furthermore, we confirmed that the interactions of TIM-1-EGFP with apoptotic cells were blocked by TIM-1-Fc fusion proteins. This fusion protein represents a readily obtainable source of biologically active TIM-1 that may prove useful in future studies of human TIM-1.

Cardiac hypertrophy and abnormal $Ca^{2+}$ handling in transgenic mice overexpressing jnnctate

  • Hong, Chang-Soo;Cho, Myeong-Chan;Kwak, Yong-Geun;Chane, Soo-Wan;Kim, Do-Han
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.52-52
    • /
    • 2003
  • Junctate is a newly identified integral ER/SR membrane $Ca^{2+}$ binding protein, which is an alternative splicing form of the same gene generating aspartyl $\square$-hydroxylase and junctin. To elucidate the functional role of junctate in heart, transgenic (TG) mice overexpressing mouse cardiac junctate-1 under the control of mouse $\square$$^{~}$ myosin heavy chain promoter were generated. Overexpression of junctate in mouse heart resulted in cardiac hypertrophy, increased fibrosis, bradycardia, arrhythmias and impaired contractility. Overexpression of junctate also led to down-regulation of SERCA2, calsequestrin, calreticulin and RyR, but to up-regulation of NCX and PMCA. The SR $Ca^{2+}$ content decreased and the L-type $Ca^{2+}$ current density and the action potential durations increased in TG cardiomyocytes, which could be the cause for the bradycardia in TG heart. The present work has provided an important example of pathogenesis leading to cardiac hypertrophy and arrhythmia, which was caused by impaired $Ca^{2+}$ handling by overexpression of junctate in heart.n heart.

  • PDF

[ ${\alpha}$ ]Synuclein Induces Unfolded Protein Response Via Distinct Signaling Pathway Independent of ER-membrane Kinases

  • Kang, Shin-Jung;Shin, Ki-Soon;Kim Kwon, Yun-Hee
    • Animal cells and systems
    • /
    • 제10권3호
    • /
    • pp.115-120
    • /
    • 2006
  • Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.

Overexpression of starch branching enzyme 1 gene improves eating quality in japonica rice

  • Sun, Ming-Mao;Lee, Hye-Jung;Abdula, Sailila E.;Jee, Moo-Geun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • 제40권2호
    • /
    • pp.88-101
    • /
    • 2013
  • Eating quality of rice attracts more and more attention from rice-eating consumers in the recent years. Thus, improvement of eating quality of cooked rice has become one of the most important breeding goals in japonica rice. Here, the generation of transgenic japonica rice with improved eating quality and grain yield are reported. Overexpression of OsSbe1 gene encoding rice starch branching enzyme 1 was driven by 35S promoter. Eleven independent homozygous $T_3$ transgenic lines were characterized and had shown higher palatability (71.2 ~ 72.6) than wild type Gopum (70.4). Moreover, transgenic rice lines showed an increase in 1000-grain weight and number of spikelets per panicle compared with the wild type. The yield of milled rice was 562.8 ~ 596.7 kg/10a in eight $T_3$ lines, but 542.1 kg/10a in wild type. Gene expression analyses in mRNA transcription and enzyme activity levels suggest that improved eating quality is due to the up-regulation of OsSbe1 gene.

Functional Conservation and Divergence of FVE Genes that Control Flowering Time and Cold Response in Rice and Arabidopsis

  • Baek, Il-Sun;Park, Hyo-Young;You, Min Kyoung;Lee, Jeong Hwan;Kim, Jeong-Kook
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.368-372
    • /
    • 2008
  • Recent molecular and genetic studies in rice, a short-day plant, have elucidated both conservation and divergence of photoperiod pathway genes and their regulators. However, the biological roles of rice genes that act within the autonomous pathway are still largely unknown. In order to better understand the function of the autonomous pathway genes in rice, we conducted molecular genetic analyses of OsFVE, a rice gene homologous to Arabidopsis FVE. OsFVE was found to be ubiquitously expressed in vegetative and reproductive organs. Overexpression of OsFVE could rescue the flowering time phenotype of the Arabidopsis fve mutants by up-regulating expression of the SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and down-regulating FLOWERING LOCUS C (FLC) expression. These results suggest that there may be a conserved function between OsFVE and FVE in the control of flowering time. However, OsFVE overexpression in the fve mutants did not rescue the flowering time phenotype in in relation to the response to intermittent cold treatment.

USP15 inhibits multiple myeloma cell apoptosis through activating a feedback loop with the transcription factor NF-κBp65

  • Zhou, Lili;Jiang, Hua;Du, Juan;Li, Lu;Li, Rong;Lu, Jing;Fu, Weijun;Hou, Jian
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.11.1-11.12
    • /
    • 2018
  • USP15 has been shown to stabilize transcription factors, to be amplified in many cancers and to mediate cancer cell survival. However, the underlying mechanism by which USP15 regulates multiple myeloma (MM) cell proliferation and apoptosis has not been established. Here, our results showed that USP15 mRNA expression was upregulated in MM patients. USP15 silencing induced MM cell proliferation inhibition, apoptosis, and the expression of nuclear and cytoplasmic NF-${\kappa}Bp65$, while USP15 overexpression exhibited an inverse effect. Moreover, in vivo experiments indicated that USP15 silencing inhibited MM tumor growth and NF-${\kappa}Bp65$ expression. PDTC treatment significantly inhibited USP15 overexpression-induced cell proliferation, apoptosis inhibition, and NF-${\kappa}Bp65$ expression. USP15 overexpression promoted NF-${\kappa}Bp65$ expression through inhibition of its ubiquitination, whereas NF-${\kappa}Bp65$ promoted USP15 expression as a positive regulator. Taken together, the USP15-NF-${\kappa}Bp65$ loop is involved in MM tumorigenesis and may be a potential therapeutic target for MM.

The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.469-474
    • /
    • 2019
  • Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of $NF-{\kappa}B$. Although the $NF-{\kappa}B$ pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis.