• Title/Summary/Keyword: over current characteristics

Search Result 1,158, Processing Time 0.029 seconds

Current and voltage characteristics of inverted staggered type amorphous silicon thin film transistor by chemical vapour deposition (CVD증착에 의한 인버티드 스태거형 TFT의 전압 전류 특성)

  • 이우선;박진성;이종국
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1008-1012
    • /
    • 1996
  • I-V, C-V characteristics of inverted staggered type hydrogenerated amorphous silicon thin film transistor(a-Si:H TFT) was studied and experimentally verified. The results show that the log-log plot of drain current increased by voltage increase. The saturated drain current of DC output characteristics increased at a fixed gate voltage. According to the increase of gate voltage, activation energy of electron and the increasing width of Id at high voltage were decreased. Id saturation current saturated at high Vd over 4.5V, Vg-ld hysteresis characteristic curves occurred between -15V and 15V of Vg. Hysteresis current decreased at low voltage of -15V and increased at high voltage of 15V.

  • PDF

Stability characteristics of DyBCO coated conductor stabilized with stainless steel

  • Dixit, Manglesh;Kim, Tae-Hyung;Oh, Sang-Soo;Song, Kyu-Jeong;Kim, Ho-Min;Park, Kwon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.288-289
    • /
    • 2005
  • As high temperature superconductor applications became a reality due to increase in coated conductor performance, it is important to understand their stability behavior to design safe electrical power systems. We have experimentally studied the dependence of quench and recovery characteristics of coated conductors on the amplitude of current and duration time. The sample used in the present study is stabilized with stainless steel. Stability tests of 3 cm long sample were performed in a liquid nitrogen bath cooling condition by applying a short period over current pulses for 50 and 100 ms, with amplitude up to ~ 6 times of the critical current. The transport current that follows before and after the current pulse was fixed about ~85% the critical current. We analyzed the quench recovery using the current voltage characteristic.

  • PDF

Characteristics of Short-Circuit Protector in Pad-Mounted Transformer (지상변압기의 단락보호장치 특성연구)

  • Kim, K.H.;Lee, W.Y.;Sun, C.H.;Kim, D.M.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1350-1352
    • /
    • 1995
  • This paper discribed the characteristic of I-t cross-over-point between current limited-fuse and explusion fuse(Bay-O-Net Fuse) and fuse protection in pad-mounted transformer that was generated internal faults and the short circuit of secondary side(load side). In the I-t cross-over-point, current limited fuse was melted when transient recovery voltage was raised rapidly.

  • PDF

Over-critical current characteristics of a Bi-2223 tape (Bi-2223테이프의 과임계전류 특성)

  • 박권배;이성수;류경우;이지광;차귀수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.128-129
    • /
    • 2000
  • The over-critical current behaviors for bare or insulated Bi-222 tapes with different matrix materials have been examined. The result shows that static resistances of the two bare tapes becomes similar for currents above 150 A but different for currents below. In the insulated A tape the first rapid temperature rise occurred around 180 A and eventually burned out about 190A.

  • PDF

A Study on the Operating Characteristics of Molded Case Circuit Breakers according to Temperature Rise (온도상승에 따른 배선용 차단기의 동작특성에 관한 연구)

  • Jung, Da-Woon;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.8-13
    • /
    • 2015
  • Molded Case Circuit Breakers (MCCBs) are typically used to provide over current protection for electrical safety caused by short circuit faults and overloads in indoor low voltage power systems. The MCCB automatically connects and disconnects loads from the electrical source when the current reaches a value and duration that will cause an excessive. However, the MCCB sometimes is not interrupted due to a malfunction, nuisance tripping, or in a fire. Ensuring electrical safety is very important in a indoor low voltage power system. This paper presents the operating characteristics of MCCBs according to a temperature rise from room temperature to 160 degrees Celsius delivered by a radiant panel heater. The ABS 54c(rated current: 30A) of the hydraulic magnetic trip type was used in the experiments. The signals of temperature, voltage, and current were measured using the high accuracy Signal Conditioning Extensions for Instrumentation (SCXI) measurement system with the LabVIEW program manufactured by National Instruments. The operating characteristics were measured as functions of current amplitude and ramp-up rate. The MCCB tripping time decreased as a result of increasing current amplitude and ramp-up rate under a temperature rise condition, because the temperature and level of the current are directly proportional to the tripping time. Additionally, an instantaneous operation was observed after 8 times of the rated current, and the MCCB began to melt a surface temperature of around 300 degrees Celsius of. The experimental results coincided well with the operating curve.

Leakage Current of Hydrogenated Amorphous Silicon Thin-Film Transistors (수소화된 비정질규소 박막트랜지스터의 누설전류)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.738-742
    • /
    • 2007
  • The variations in the device characteristics of hydrogenated amorphous thin-film transistors (a-Si:H TFTs) were studied according to the processes of pixel electrode fabrication to make active-matrix flat-panel displays. The off-state current was about 1 pA and the switching ratio was over $10^6$ before fabrication of pixel electrodes; however, the off-state current increased over 10 pA after fabrication of pixel electrodes. Surface treatment on SiNx passivation layers using plasma could improve the off-state characteristics after pixel electrode process. $N_2$ plasma treatment gave the best result. Charge accumulation on the SiNx passivation layer during the deposition of transparent conducting layer might cause the increase of off-state current after the fabrication of pixel electrodes.

  • PDF

Over current characteristics of HTS tapes with various pitch angle (피치각에 따른 고온초전도 선재의 과전류 특성)

  • Yim, Seong-Woo;Hwang, Si-Dole;Choi, Hyo-Sang;Hyun, Ok-Bae;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.961-963
    • /
    • 2002
  • When high temperature superconducting(HTS) tapes are wound on former for HTS cable application, their critical characteristics are likely to be degraded seriously because of mechanical stress. In this study, prior to fabricate prototype HTS cables, we investigated the variation of critical characteristics of HTS tapes according to their pitch angles. For this work, we prepared the samples of HTS tapes on the former of which diameter is 3cm. Pitch angles of HTS tapes are $0^{\circ}$, $00^{\circ}$, $20^{\circ}$, $30^{\circ}$, $40^{\circ}$, respectively. We applied current up to 160 $A_{rms}$ to HTS tapes and investigated E-I characteristics. The critical current of HTS tapes was decreased as pitch angle increased. In addition, when the applied current was beyond their critical current, the rate of resistance increase of HTS tapes was in proportion to their critical current. Finally, We concluded that the pitch angles affected resistance increase of HTS tapes as well as critical current.

  • PDF

Development of constant current SMPS for LED Lighting (LED 조명용 정전류 SMPS 개발)

  • Shin, Hyun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2015
  • In this study, the constant current converter for LED lighting was designed and the electrical characteristics of the fabricated SMPS was measured. When the output current is 300mA the maximum efficiency of 85% was shown and the output current is in the range of 100~400mA efficiency over 70% were exhibited. Also the dimming levels control over the range of 0 to 100% was possible by using a control signal of 0~250mV.

Quench characteristics of stainless steel laminated DyBCO coated conductor (스테인레스강 라미네이션된 DyBCO 초전도 선재의 퀜치 특성)

  • Dixit Manglesh;Kim Tae Hyung;Oh Sang Soo;Song Kyu Jeong;Kim Ho Min;Park Kwon Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2005
  • As high temperature superconductor applications became a reality due to increase in coated conductor performance, it is important to understand their stability behavior to design safe electrical power systems. Coated conductors can be stabilized with different metals and alloys for different types of application, to yield excellent electrical, thermal and mechanical performance. We have experimentally studied the dependence of quench and recovery characteristics of stainless steel stabilized coated conductors on the amplitude of current and duration time. Stability test of 3cm long sample were performed in a liquid nitrogen bath cooling condition by applying a short period over current pulses for 50 and 100ms, with amplitude up to ~6 times the critical current. The transport current that flows before and after the current pulse was fixed at about ~80-85% critical current. We analyzed the quench and recovery phenomena of the test sample using the current voltage characteristic.

Characteristics of Ni-Fe Core Materials for Hall Current Sensor (홀소자 전류센서를 위한 니켈강 코어 소재 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.505-509
    • /
    • 2014
  • In this research, the structural, physical and electrical characteristics of Ni-Fe core chosen to minimize the errors of the Hall current sensors were investigated and Hall current sensor using Ni-Fe core was fabricated. In the result, the fabricated Ni-Fe sample exhibited the maximum hardness about 29.5 GPa and the low friction coefficient about 0.35, and electrical resistivity over $90mOhm{\cdot}cm$. And also Hall current sensor using the fabricated Ni-Fe core showed linear current-voltage properties for DC current at $25^{\circ}C$ temperature.