• Title/Summary/Keyword: over current characteristics

Search Result 1,158, Processing Time 0.028 seconds

AN EXPERIMENTAL STUDY ON THE EFFECT OF THE GALVANIC CURRENT ON THE MANDIBULAR GROWTH IN RAT (Galvani전류가 백서의 하악골 성장에 미치는 영향에 관한 실험적 연구)

  • Yang, Sang-Duk;Suhr, Cheng Hoon
    • The korean journal of orthodontics
    • /
    • v.18 no.1 s.25
    • /
    • pp.189-207
    • /
    • 1988
  • In almost all biologic systems, mechanically induced electric charge separation is a fundamental phenomenon. Since the hypothesis was established that the generation of electric potentials in bone by mechanical stress including muscular force might control the activity in bone by mechanical stress including muscular force might control the activity of osseous cells and their biopolymeric byproduct, the concept of electrically mediate growth mechanism, which involves biological growth and bone remodeling by any means, in living systems has been applied clinically and experimentally to orthopedic fracture repair, the regulation of orthodontic tooth movement, epiphyseal cartilage regeneration, etc. On the other hand, recent numerous research data available show apparently that the mandibular condyle has the characteristics of growth center as well as growth site. In addition, there exists a considerable difference of opinion as to the role of external pterygoid muscle in condylar growth. In view of these evidences, this. experiment was performed to investigate the effect of the galavic current on the growth of the mandible and condyle for elucidating the nature of condylar growth. The bimetallic device was composed of silver and platinum electrode connected with resistor (3.9 Mohm), which was expected to produce galvanic current of 23.6 nA according to the galvanic principle. The 25 Sprague-Dawley rats were divided into two group, 2 week group comprising 8 animals exposed to satanic current for 2 weeks and 3 control animals not exposed for 2 weeks, 4 week group comprising 10 animals in experimental group and 4 animals in control group applied for 4 weeks respectively. The experimental rats were subjected to application of the galvanic current invasively to codylar head surface and the control groups with sham electrode. On the basis of anatomic and histologic data from the mandibular condyle of experimental and control group, the following results were obtained. 1. After 2 weeks, there was no increase of mandibular size in experimental group over that of the control group. 2. After 4 weeks, the size of the condylar head was larger in experimental group than that of the control. 3. In 2 week group, the thickness of the mitotic compartment and hypertrophic chondroblastic layer was increased in experimental group. 4. In 4 week group, the number and the size of the hypertrophic chondroblasts were increased significantly on experimental group over that of the control group. 5. The application of the satanic current caused an increase in chondrocytic hypertrophy and intercellular matrix in both groups.

  • PDF

A Design Method on Power Sensefet to Protect High Voltage Power Device (고전압 전력소자를 보호하기 위한 센스펫 설계방법)

  • Kyoung, Sin-Su;Seo, Jun-Ho;Kim, Yo-Han;Lee, Jong-Seok;Kang, Ey-Goo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.6-7
    • /
    • 2008
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The sense FET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 450V power MOSFET devices by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5\times10^{14}cm^{-3}$, size of $600{\mu}m^2$ with 4.5 $\Omega$, and off-state leakage current below 50 ${\mu}A$. We offer the layout of the proposed sense FET to process actually. The offerd design and optimization methods is meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

  • PDF

Reliability-based Design Optimization on Mobility of Deep-seabed Test Miner Using Censored Data of Current Speed (중도절단 해류속도자료를 이용한 심해저 시험집광기의 주행성능에 관한 신뢰성 기반 최적설계)

  • Park, Sanghyun;Cho, Su-Gil;Lim, Woochul;Kim, Saekyeol;Choi, Sung Sik;Lee, Minuk;Choi, Jong-Su;Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Lee, Tae Hee
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.487-494
    • /
    • 2014
  • Deep-seabed test miner operated by a self-propelled mining system moving on soft soil is an essential device to secure floating and towing performances. The performances of the tracked vehicle are seriously influenced by noise factors such as the shear strength of the seafloor, bottom current, seafloor slope, speed of tracked vehicle, reaction forces of flexible hose, steering ratio, etc. Due to uncertainties related to noise factors, the design of a deep-sea manganese nodules test miner that satisfies target reliabilities is difficult. Therefore, reliability-based design optimization (RBDO) is required to guarantee system reliability under circumstances where uncertainties related to noise factors prevail. Among noise factors, the bottom current, a bimodal distribution, is censored due to the observation limit of measurement devices. Therefore, estimated distribution of the bottom current is inaccurate without considering these characteristics and the result of RBDO cannot be guaranteed. In this paper, we define censored data as unknown values over the limit of observation. If this data is estimated by using Akaike information criterion (AIC) that cannot consider the characteristics of censored data, the distribution of estimated data cannot guarantee accurate reliability. Therefore, censored AIC that can consider the characteristics of data is used to estimate accurate distribution of the bottom current. Finally, RBDO, under circumstances where uncertainties related to noise factors combined censored data are present, is performed on the mobility of a deep-sea manganese nodules test miner.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Current chewing difficulty according to dental prosthesis needs in Korean elderly (한국 노인의 보철 필요 상태에 따른 저작불편 조사)

  • Kim, Tae-Heon;Jin, Hye-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4353-4360
    • /
    • 2014
  • This study examined the relationship between the current chewing difficulty and the dental prosthesis needs of the elderly Koreans to improve their oral health status. A total of 1,177 subjects over 65 years who participated in the the Five Korea National Health and Nutrition Examination Survey were examined. An oral examination was conducted to determine the number of missing teeth and dental prosthesis required. A questionnaire was given to measure the sociodemographic characteristics, concerns about oral health, chewing ability and pronunciation ability. Statistical analysis was done using the SPSS 19.0 program. The percentage of the current chewing difficulty in Korean elderly was 42.9%. After adjusting for confounder variables, the odds ratio of the fixed prosthodontics needs were 1.22 (95% CI; 0.74 to 2.02), the odds ratio of partial denture needs were 2.47 (95% CI; 1.71 to 3.56) and the odds ratio of the full denture needs were 2.06 (95% CI; 0.73 to 5.81). The dental prosthesis needs were associated with the current chewing difficulty. Therefore, dental prosthesis support policy and public oral health promotion for the elderly is necessary.

Current Characteristics of a Flow Injection Type Enzyme-Sensor as the Variables of a Buffer Velocity, an Enzyme-Substrate Reaction and an Electrode for the Control of a Fermentation Process (완충용액유속, 효소.기질 반응 및 전극봉 요인에 따른 발효공정 제어용 흐름주입식 효소센서의 전류값 특성)

  • Song, Dae-Bin;Jung, Hyo-Seok;Kim, Sung-Tae
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.455-461
    • /
    • 2007
  • The electric current of a flow injection type enzyme-sensor was measured to confirm the stable operating conditions of the sensor. The current of the sensor was decreased as the buffer solution velocity increased. Under the limitation of the cycle time to be below 10 minutes, the effective ranges of the buffer solution velocity were suggested $0.10{\sim}0.26$, $0.12{\sim}0.24$, $0.1{\sim}0.25$ and $0.05{\sim}0.10\;cm/s$ of 1.0, 1.4, 2.4 and 3.4 mm of the electrode diameters, respectively. As the reaction time of the enzyme and the substrate was increased, the current was decreased because of the dilution between the sample and buffer solution. Therefore, it could be recommended that the reaction time was able to be selected as shortly as possible in consideration of the total cycle time. As the result of the experiments using a different volume ratio of the enzyme to substrate, it was concluded that the substrate had to be mixed with the same amount of the enzyme. The current have increased remarkably in proportion to the electrode diameter under 0.1 cm/s of the buffer solution velocity but there was no difference over 0.1 cm/s of the buffer solution velocity. The cross type arrangement of the electrode was highly suggested for application and machining of the sensor.

A Study on the Improvement of Fault Detection Capability for Fault Indicator using Fuzzy Clustering and Neural Network (퍼지클러스터링 기법과 신경회로망을 이용한 고장표시기의 고장검출 능력 개선에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.374-379
    • /
    • 2007
  • This paper focuses on the improvement of fault detection algorithm in FRTU(feeder remote terminal unit) on the feeder of distribution power system. FRTU is applied to fault detection schemes for phase fault and ground fault. Especially, cold load pickup and inrush restraint functions distinguish the fault current from the normal load current. FRTU shows FI(Fault Indicator) when the fault current is over pickup value or inrush current. STFT(Short Time Fourier Transform) analysis provides the frequency and time Information. FCM(Fuzzy C-Mean clustering) algorithm extracts characteristics of harmonics. The neural network system as a fault detector was trained to distinguish the inruih current from the fault status by a gradient descent method. In this paper, fault detection is improved by using FCM and neural network. The result data were measured in actual 22.9kV distribution power system.

Efficiency Optimization Control of IPMSM Drive using Multi AFLC (다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

Fuel Cell Generation Systems with Active Clamp Current fed Half Bridge Converter (능동 클램프 전류형 하프 브리지 컨버터를 적용한 연료전지 발전시스템)

  • Jang S. J.;Kim J. T.;Lee T. W.;Lee B. K.;Won C. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.78-86
    • /
    • 2005
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a dc-dc boost converter and dc-ac inverter to be used in fuel cell generation system. Therefore, this paper presents dc-dc active clamp current-fed half-bridge converter with ZVS for fuel cell generation system. The proposed converter has outstanding advantages over the conventional dc-dc converters with respect to high efficiency and high component utilization. The Fuel Cell generation system consist of active clamp current-fed half-bridge converter to boost the Fuel Cell(PEMFC) voltage(28∼43[Vdc]) to 380[Vdc]. A single phase full-bridge inverter is implemented to produce 220[Vac], 60[Hz] AC outputs.

A Study on the Calculation of Allowable Continuous Current for HVDC Submarine Power Cables (HVDC 해저케이블의 연속허용전류 계산에 관한 연구)

  • Lim, Chung-Hwan;Park, Hung-Sok;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.815-824
    • /
    • 2022
  • The growing integration of intermittent renewable sources like offshore wind energy increases the need for transferring electric energy over long distances, which may include sea crossings. One of the solutions available for bulk electric power transmission across large distances encompassing wide and deep sea is using HVDC submarine power cables. However, there are no standards or research related to the calculation of the continuous allowable current with various ocean conditions of a DC power cable that does not have an alternating magnetic field. In this study, assuming the typical two types of subsea cable models and two areas of the south coast and the west coast marine conditions, a continuous allowable current simulation of DC cables was performed. As a simulation result, the DC cable continuous allowable current find out the gradient reduction characteristics based on subsea base depth.