• Title/Summary/Keyword: output prediction

Search Result 733, Processing Time 0.03 seconds

Derivation of design equations for various incremental delta sigma analog to digital converters (다양한 증분형 아날로그 디지털 변환기의 설계 방정식 유도)

  • Jung, Youngho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1619-1626
    • /
    • 2021
  • Unlike traditional delta-sigma analog-to-digital converters, incremental analog-to-digital converters enable 1:1 mapping of input and output through a reset operation, which can be used very easily for multiplexing. Incremental analog-to-digital converters also allow for simpler digital filter designs compared to traditional delta-sigma converters. Therefore, starting with analysis in the time domain of the delayed integrator and non-delayed integrator, which are the basic blocks of analog-to-digital converter design, the design equations of a second-order input feed-forward, extended counting, 2+1 MASH (Multi-stAge-noise-SHaping), 2+2 MASH incremental analog-to-digital converter are derived in this paper. This allows not only prediction of the performance of the incremental analog-to-digital converter before design, but also the design of a digital filter suitable for each analog-to-digital converter. In addition, extended counting and MASH design techniques were proposed to improve the accuracy of analog-to-digital converters.

Evaluating flexural strength of concrete with steel fibre by using machine learning techniques

  • Sharma, Nitisha;Thakur, Mohindra S.;Upadhya, Ankita;Sihag, Parveen
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-220
    • /
    • 2021
  • In this study, potential of three machine learning techniques i.e., M5P, Support vector machines and Gaussian processes were evaluated to find the best algorithm for the prediction of flexural strength of concrete mix with steel fibre. The study comprises the comparison of results obtained from above-said techniques for given dataset. The dataset consists of 124 observations from past research studies and this dataset is randomly divided into two subsets namely training and testing datasets with (70-30)% proportion by weight. Cement, fine aggregates, coarse aggregates, water, super plasticizer/ high-range water reducer, steel fibre, fibre length and curing days were taken as input parameters whereas flexural strength of the concrete mix was taken as the output parameter. Performance of the techniques was checked by statistic evaluation parameters. Results show that the Gaussian process technique works better than other techniques with its minimum error bandwidth. Statistical analysis shows that the Gaussian process predicts better results with higher coefficient of correlation value (0.9138) and minimum mean absolute error (1.2954) and Root mean square error value (1.9672). Sensitivity analysis proves that steel fibre is the significant parameter among other parameters to predict the flexural strength of concrete mix. According to the shape of the fibre, the mixed type performs better for this data than the hooked shape of the steel fibre, which has a higher CC of 0.9649, which shows that the shape of fibers do effect the flexural strength of the concrete. However, the intricacy of the mixed fibres needs further investigations. For future mixes, the most favorable range for the increase in flexural strength of concrete mix found to be (1-3)%.

Disease Prediction System based on WEB (WEB 기반 질병 예측 시스템)

  • Hong, YouSik;Han, Y.H.;Lee, W.B.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • The Ministry of Environment recently analyzed the output data of 10 fine dust measuring stations and, as a result, announced that about 60% had an error that the existing atmospheric measurement concentration was higher. In order to accurately predict fine dust, the wind direction and measurement position must be corrected. In this paper, in order to solve these problems, fuzzy rules are used to solve these problems. In addition, in order to calculate the fine particulate sensation index actually felt by pedestrians on the street, a computer simulation experiment was conducted to calculate the fine particulate sensation index in consideration of weather conditions, temperature conditions, humidity conditions, and wind conditions.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

Implementation of Exchange Rate Forecasting Neural Network Using Heterogeneous Computing (이기종 컴퓨팅을 활용한 환율 예측 뉴럴 네트워크 구현)

  • Han, Seong Hyeon;Lee, Kwang Yeob
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.71-79
    • /
    • 2017
  • In this paper, we implemented the exchange rate forecasting neural network using heterogeneous computing. Exchange rate forecasting requires a large amount of data. We used a neural network that could leverage this data accordingly. Neural networks are largely divided into two processes: learning and verification. Learning took advantage of the CPU. For verification, RTL written in Verilog HDL was run on FPGA. The structure of the neural network has four input neurons, four hidden neurons, and one output neuron. The input neurons used the US $ 1, Japanese 100 Yen, EU 1 Euro, and UK £ 1. The input neurons predicted a Canadian dollar value of $ 1. The order of predicting the exchange rate is input, normalization, fixed-point conversion, neural network forward, floating-point conversion, denormalization, and outputting. As a result of forecasting the exchange rate in November 2016, there was an error amount between 0.9 won and 9.13 won. If we increase the number of neurons by adding data other than the exchange rate, it is expected that more precise exchange rate prediction will be possible.

Recurrent Neural Network Model for Predicting Tight Oil Productivity Using Type Curve Parameters for Each Cluster (군집 별 표준곡선 매개변수를 이용한 치밀오일 생산성 예측 순환신경망 모델)

  • Han, Dong-kwon;Kim, Min-soo;Kwon, Sun-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.297-299
    • /
    • 2021
  • Predicting future productivity of tight oil is an important task for analyzing residual oil recovery and reservoir behavior. In general, productivity prediction is made using the decline curve analysis(DCA). In this study, we intend to propose an effective model for predicting future production using deep learning-based recurrent neural networks(RNN), LSTM, and GRU algorithms. As input variables, the main parameters are oil, gas, water, which are calculated during the production of tight oil, and the type curve calculated through various cluster analyzes. the output variable is the monthly oil production. Existing empirical models, the DCA and RNN models, were compared, and an optimal model was derived through hyperparameter tuning to improve the predictive performance of the model.

  • PDF

Motion Response Estimation of Fishing Boats Using Deep Neural Networks (심층신경망을 이용한 어선의 운동응답 추정)

  • TaeWon Park;Dong-Woo Park;JangHoon Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.958-963
    • /
    • 2023
  • Lately, there has been increasing research on the prediction of motion performance using artificial intelligence for the safe design and operation of ships. However, compared to conventional ships, research on small fishing boats is insufficient. In this paper, we propose a model that estimates the motion response essential for calculating the motion performance of small fishing boats using a deep neural network. Hydrodynamic analysis was conducted on 15 small fishing boats, and a database was established. Environmental conditions and main particulars were applied as input data, and the response amplitude operators were utilized as the output data. The motion response predicted by the trained deep neural network model showed similar trends to the hydrodynamic analysis results. The results showed that the high-frequency motion responses were predicted well with a low error. Based on this study, we plan to extend existing research by incorporating the hull shape characteristics of fishing boats into a deep neural network model.

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]

An advanced machine learning technique to predict compressive strength of green concrete incorporating waste foundry sand

  • Danial Jahed Armaghani;Haleh Rasekh;Panagiotis G. Asteris
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • Waste foundry sand (WFS) is the waste product that cause environmental hazards. WFS can be used as a partial replacement of cement or fine aggregates in concrete. A database comprising 234 compressive strength tests of concrete fabricated with WFS is used. To construct the machine learning-based prediction models, the water-to-cement ratio, WFS replacement percentage, WFS-to-cement content ratio, and fineness modulus of WFS were considered as the model's inputs, and the compressive strength of concrete is set as the model's output. A base extreme gradient boosting (XGBoost) model together with two hybrid XGBoost models mixed with the tunicate swarm algorithm (TSA) and the salp swarm algorithm (SSA) were applied. The role of TSA and SSA is to identify the optimum values of XGBoost hyperparameters to obtain the higher performance. The results of these hybrid techniques were compared with the results of the base XGBoost model in order to investigate and justify the implementation of optimisation algorithms. The results showed that the hybrid XGBoost models are faster and more accurate compared to the base XGBoost technique. The XGBoost-SSA model shows superior performance compared to previously published works in the literature, offering a reduced system error rate. Although the WFS-to-cement ratio is significant, the WFS replacement percentage has a smaller influence on the compressive strength of concrete. To improve the compressive strength of concrete fabricated with WFS, the simultaneous consideration of the water-to-cement ratio and fineness modulus of WFS is recommended.