• Title/Summary/Keyword: output error

Search Result 2,329, Processing Time 0.025 seconds

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.

New Beamforming Schemes with Optimum Receive Combining for Multiuser MIMO Downlink Channels (다중사용자 다중입출력 하향링크 시스템을 위한 최적 수신 결합을 이용한 새로운 빔 형성 기법)

  • Lee, Sang-Rim;Park, Seok-Hwan;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.8
    • /
    • pp.15-26
    • /
    • 2011
  • In this paper, we present a new beamforming scheme for a downlink of multiuser multiple-input multipleoutput (MIMO) communication systems. Recently, a block-diagonalization (BD) algorithm has been proposed for the multiuser MIMO downlink where both a base station and each user have multiple antennas. However, the BD algorithm is not efficient when the number of supported streams per user is smaller than that of receive antennas. Since the BD method utilizes the space based on the channel matrix without considering the receive combining, the degree of freedom for beamforming cannot be fully exploited at the transmitter. In this paper, we optimize the receive beamforming vector under a zero forcing (ZF) constraint, where all inter-user interference is driven to zero. We propose an efficient algorithm to find the optimum receive vector by an iterative procedure. The proposed algorithm requires two phase values feedforward information for the receive combining vector. Also, we present another algorithm which needs only one phase value by using a decomposition of the complex general unitary matrix. Simulation results show that the proposed beamforming scheme outperforms the conventional BD algorithm in terms of error probability and obtains the diversity enhancement by utilizing the degree of freedom at the base station.

A Study on Development of Operational System for Oil Spill Prediction Model (유출유 확산 예측 모델의 상시 운용 체계 개발에 관한 연구)

  • Kim, Hye-Jin;Lee, Moon-Jin;Oh, Se-Woong;Kang, Joon-Mook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.375-382
    • /
    • 2011
  • There is no system to obtain the basic data and proceed data and user input interface is complex, thus there are some limitation to utilize the oil spill prediction model. It is difficult to build the scientific response strategy in order to respond oil spill accident rapidly because it is impossible to operate the oil spill prediction model any time. In this study, the optimum operational system for oil spil prediction model has been developed considering the present system. External real time data has been linked because of impossibility of building all basic data and minimum database has been build in this study. Through this data system, real time oil spill prediction model can be utilized. And the user interface has been designed to reduce the error of the interface between user and model and the output interface has been proposed to analyze the result of modeling at multidimensional aspect. While the system for oil spill prediction model as the result of this study has some uncertainties because of depending on external data, the thing that we can predict oil spill using operate the model rapidly as soon as the accident occurred can be meaning in the response field.

AC-DC Transfer Characteristics of a Bi-Sb Multijunction Thermal Converter (Bi-Sb 다중접합 열전변환기의 교류-직류 변환 특성)

  • 김진섭;이현철;함성호;이종현;이정희;박세일;권성원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.46-54
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter, which is consisted of a linear or bifilar thin film NiCr-heater and a thin film Bi-Sb thermopile, has been fabricated, and its ac-dc transfer characteristics were examined in a frequency range from 10 Hz to 10 KHz. In order to increase the thermal sensitivity and to decrease the ac-dc transfer error of a thermal converter, the heater and the hot junctions of a thermopile were prepared on a Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-diaphragm which acts as a thermal isolation layer, and the cold junctions on the Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-thin film supported with the silicon rim which functions as a heat sink. The respective thermal sensitivities in air and in a vacuum of the converter with a built-in bifilar heater were about 14.0 ㎷/㎽ and 54.0 ㎷/㎽, and the ac-dc voltage and the current transfer difference ranges in air were about $\pm$0.60 ppm and $\pm$0.11 ppm, respectively, indicating that the ac-dc transfer accuracy of the converter are much higher than that of a commercial 3-dimensional multijunction thermal converter. However, the output thermoelectric voltage fluctuation of the converter was rather high.

  • PDF

The Performance Analysis of CCA Adaptive Equalization Algorithm for 16-QAM Signal (16-QAM 신호에 대한 CCA 적응 등화 알고리즘 성능 분석)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • This paper deals with the performance anlysis of CCA adaptive equalization algorithm, that is used for reduction of intersymbol interference at the receiving side which occurs in the time dispersive communication channel. Basically, this algorithm is borned for the solving phase unrecovery problem in the CMA equalizer, and the comines the concept of DDA (Decision Directed Algorithm) and RCA (Reduce Constellation Algorithm). The DDA has a stable convergence characteristics in unilevel signal, but not in the number of levels in multilevel signal such as QAM, so it has unstable problem. The RCA does not provide reliable initial convergence. And even after convergence, the equalization noise due to the steady state misadjustment exhibited by it is very high as compared to DDA. For the solving the abovemensioned point, the CCA adaptive eualization alogorithm has borned. In order to performance analysis of CCA algorithm, the recovered signal constellation that is the output of the equalizer, the convergence characteristic by the residual isi and MD (maximum distortion), the SER characteristic are used by computer simulation and it was compared with the DDA, RCA respectively. As a result of simulation, the DDA has superior performance than other algoithm, but it has a convergence unguarantee and unstability in the multilevel signal. In order to solving this problem, the CCA has more good performance than RCA in every performance index.

Automatic Parameter Acquisition of 12 leads ECG Using Continuous Data Processing Deep Neural Network (연속적 데이터 처리 심층신경망을 이용한 12 lead 심전도 파라미터의 자동 획득)

  • Kim, Ji Woon;Park, Sung Min;Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.107-119
    • /
    • 2020
  • The deep neural networks (DNN) that can replicate the behavior of the human expert who recognizes the characteristics of ECG waveform have been developed and studied to analyze ECG. However, although the existing DNNs can not provide the explanations for their decisions, those trials have attempted to determine whether patients have certain diseases or not and those decisions could not be accepted because of the absence of relating theoretical basis. In addition, these DNNs required a lot of training data to obtain sufficient accuracy in spite of the difficulty in the acquisition of relating clinical data. In this study, a small-sized continuous data processing DNN (C-DNN) was suggested to determine the simple characteristics of ECG wave that were not required additional explanations about its decisions and the C-DNN can be easily trained with small training data. Although it can analyze small input data that was selected in narrow region on whole ECG, it can continuously scan all ECG data and find important points such as start and end points of P, QRS and T waves within a short time. The star and end points of ECG waves determined by the C-DNNs were compared with the results performed by human experts to estimate the accuracies of the C-DNNs. The C-DNN has 150 inputs, 51 outputs, two hidden layers and one output layer. To find the start and end points, two C-DNNs were trained through deep learning technology and applied to a parameter acquisition algorithms. 12 lead ECG data measured in four patients and obtained through PhysioNet was processed to make training data by human experts. The accuracy of the C-DNNs were evaluated with extra data that were not used at deep learning by comparing the results between C-DNNs and human experts. The averages of the time differences between the C-DNNs and experts were 0.1 msec and 13.5 msec respectively and those standard deviations were 17.6 msec and 15.7 msec. The final step combining the results of C-DNN through the waveforms of 12 leads was successfully determined all 33 waves without error that the time differences of human experts decision were over 20 msec. The reliable decision of the ECG wave's start and end points benefits the acquisition of accurate ECG parameters such as the wave lengths, amplitudes and intervals of P, QRS and T waves.

Input Variables Selection of Artificial Neural Network Using Mutual Information (상호정보량 기법을 적용한 인공신경망 입력자료의 선정)

  • Han, Kwang-Hee;Ryu, Yong-Jun;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • Input variable selection is one of the various techniques for improving the performance of artificial neural network. In this study, mutual information is applied for input variable selection technique instead of correlation coefficient that is widely used. Among 152 variables of RDAPS (Regional Data Assimilation and Prediction System) output results, input variables for artificial neural network are chosen by computing mutual information between rainfall records and RDAPS' variables. At first the rainfall forecast variable of RDAPS result, namely APCP, is included as input variable and the other input variables are selected according to the rank of mutual information and correlation coefficient. The input variables using mutual information are usually those variables about wind velocity such as D300, U925, etc. Several statistical error estimates show that the result from mutual information is generally more accurate than those from the previous research and correlation coefficient. In addition, the artificial neural network using input variables computed by mutual information can effectively reduce the relative errors corresponding to the high rainfall events.

A Study of Low-Voltage Low-Power Bipolar Linear Transconductor and Its Application to OTA (저전압 저전력 바이폴라 선형 트랜스컨덕터와 이를 이용한 OTA에 관한 연구)

  • Shin, Hee-Jong;Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.40-48
    • /
    • 2000
  • 1A novel bipolar linear transconductor and its application to operational transconductance amplifier(OTA) for low-voltage low-power signal processing is proposed. The transconductor consists of a npn differential-pair with emitter degeneration resistor and a pnp differential-pair connected to the npn differential-pair in cascade. The bias current of the pnp differential-pair is used with the output current of the npn differential-pair for wide linearity and temperature stability. The OTA consists of the linear transconductor and a translinear current cell followed by three current mirrors. The proposed transconductor has superior linearity and low-voltage low-power characteristics when compared with the conventional transconductor. The experimental results show that the transconductor with transconductance of 50 ${\mu}S$ has a linearity error of less than ${\pm}$0.06% over an input voltage range from -2V to +2V at supply voltage ${\pm}$3V. Power dissipation of the transconductor was 2.44 mW. A prototype OTA with a transconductance of 25 ${\mu}S$ has been built with bipolar transistor array. The linearity of the OTA was same as the proposed transconductor. The OTA circuit also exhibits a transconductance that is linearly dependent on a bias current varying over four decades with a sensitivity of 0.5 S/A.

  • PDF

Design of 4-Bit TDL(True-Time Delay Line) for Elimination of Beam-Squint in Wide Band Phased-Array Antenna (광대역 위상 배열 안테나의 빔 편이(Beam-Squint) 현상 제거를 위한 4-Bit 시간 지연기 설계)

  • Kim, Sang-Keun;Chong, Min-Kil;Kim, Su-Bum;Na, Hyung-Gi;Kim, Se-Young;Sung, Jin-Bong;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1061-1070
    • /
    • 2009
  • In this paper, we have designed TDL(True-time Delay Line) for eliminating beam-squint occurring in active phased array antenna with large electrical size operated in wide bandwidth, and have tested its electrical performance. The proposed TDL device is composed of 4-bit microstrip delay line structure and MMIC amplifier for compensation of the delay-line loss. The measured results of gain and phase versus delay state satisfy the electrical requirements, also P1dB output power and noise figure meet the requirement. To verify the performance of fabricated TDL, we have simulated the beam patterns of wide-band active phased array antenna using the measured results and have certified the beam pattern compensation performance. As a result of simulated beam pattern compensation with respect to the 675.8 mm size antenna which is operated in X-band, 800 MHz bandwidth, we have reduced the beam squint error of ${\pm}1^{\circ}$ with ${\pm}0.1^{\circ}$. So this TDL module is able to be applied to active phase array antenna system.

Design of X-band Core Chip Using 0.25-㎛ GaAs pHEMT Process (0.25 ㎛ GaAs pHEMT 공정을 이용한 X-대역 코아-칩의 설계)

  • Kim, Dong-Seok;Lee, Chang-Dae;Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.336-343
    • /
    • 2018
  • We herein present the design and fabrication of a Rx core chip operating in the X-band (10.5~13 GHz) using Win's commercial $0.25-{\mu}m$ GaAs pHEMT process technology. The X-band core chip comprises a low-noise amplifier, a four-bit phase shifter, and a serial-to-parallel data converter. The size is $1.75mm{\times}1.75mm$, which is the state-of-the-art size. The gain and noise figure are more than 10 dB but less than 2 dB, and both the input and output return losses are less than 10 dB. The RMS phase error is less than $5^{\circ}$, and the P1dB is 2 dBm at 12.5 GHz, the performance of which is equivalent to other GaAs core chips. The fabricated core chip was packaged in a QFN package type with a size of $3mm{\times}3mm$ for the convenience of assembly. We confirmed that the performance of the packaged core chip was almost the same as that of the chip itself.