• Title/Summary/Keyword: output error

Search Result 2,327, Processing Time 0.027 seconds

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

Adaptive noise cancellation algorithm reducing path misadjustment due to speech signal (음성신호로 인한 잡음전달경로의 오조정을 감소시킨 적응잡음제거 알고리듬)

  • 박장식;김형순;김재호;손경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1172-1179
    • /
    • 1996
  • General adaptive noise canceller(ANC) suffers from the misadjustment of adaptive filter weights, because of the gradient-estimate noise at steady state. In this paper, an adaptive noise cancellation algorithm with speech detector which is distinguishing speech from silence and adaptation-transient region is proposed. The speech detector uses property of adaptive prediction-error filter which can filter the highly correlated speech. To detect speech region, estimation error which is the output of the adaptive filter is applied to the adaptive prediction-error filter. When speech signal apears at the input of the adaptive prediction-error filter. The ratio of input and output energy of adaptive prediction-error filter becomes relatively lower. The ratio becomes large when the white noise appears at the input. So the region of speech is detected by the ratio. Sign algorithm is applied at speech region to prevent the weights from perturbing by output speech of ANC. As results of computer simulation, the proposed algorithm improves segmental SNR and SNR up to about 4 dBand 11 dB, respectively.

  • PDF

Iterative learning control for a class of discrete-time nonlinear systems (이산시간 비선형 시스템에 대한 반복학습제어)

  • 안현식;최종호;김도현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.836-841
    • /
    • 1993
  • For a class of discrete-time nonlinear systems, an iterative learning control method is proposed and a sufficient condition is derived for the convergence of the output error. The proposed method is shown to be less sensitive to modelling errors and the uniform boundedness of the output error is guaranteed even in the presence of initial state errors. It is illustrated by simulations that the actual output converges to a desired output within the tolerance bound and convergence performance is improved by the presented method.

  • PDF

LPG/LTR Method for Output-Delayed System (출력 시가 지연 시스템의 LQG/LTR 방법)

  • 이상정;홍석민
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.827-837
    • /
    • 1994
  • This paper presents robustness propertis of the Kalman Fiter and the associated LQG/LTR method for linear time-invariant output-delayed systems. It is shown that, even for minimum phase plants, the LQG/LTR method can not recover the target loop transfer function. Instead, an upper bound on the recovery error is obtained using an upper bound of the solution of the Kalman filter Riccati equations. Finally, some dual properties between output-delayed systems and input-delayed systems are exploited.

  • PDF

Flexure Error Analysis of RLG based INS (링레이저 자이로 관성항법시스템의 편향 오차 해석)

  • Kim Kwang-Jin;Yu Myeong-Jong;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

A Modified Error Function to Improve the Error Back-Propagation Algorithm for Multi-Layer Perceptrons

  • Oh, Sang-Hoon;Lee, Young-Jik
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 1995
  • This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.

  • PDF

Classification and Compensation of DC Offset Error and Scale Error in Resolver Signals

  • Lee, Won;Moon, Jong-Joo;Im, Won-Sang;Park, June-Ho;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1190-1199
    • /
    • 2016
  • This study proposes a classification and compensation algorithm of two non-ideal output signals of a resolver to reduce position errors. Practically, a resolver generates position errors because of amplitude imbalance and quadrature imperfection between the two output signals of the resolver. In this study, a digital signal processor system based on a resolver-to-digital converter is used to reconstruct the two output signals of the resolver. The two output signals, "sin" and "cos," can be represented by a unit circle on the xy-plot. The classification and compensation of the errors can be obtained by using the radius and area of the circle made by the resolver signals. The method computes the integration of the areas made by the two resolver output signals to classify and compensate the error. This system cannot be applied during transient response given that the area integration during the transient state causes an error in the proposed method. The proposed method does not need any additional hardware. The experimental results verify the effectiveness of the proposed algorithm.

Data-Adaptive ECOC for Multicategory Classification

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Error Correcting Output Codes (ECOC) can improve generalization performance when applied to multicategory classification problem. In this study we propose a new criterion to select hyperparameters included in ECOC scheme. Instead of margins of a data we propose to use the probability of misclassification error since it makes the criterion simple. Using this we obtain an upper bound of leave-one-out error of OVA(one vs all) method. Our experiments from real and synthetic data indicate that the bound leads to good estimates of parameters.

  • PDF

A Novel MPPT Control of PV MIC System Considering the Shaded Effect (그림자 영향을 고려한 PV MIC 시스템의 새로운 MPPT 제어)

  • Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the new maximum power point tracking(MPPT) control of the photovoltaic(PV) module integrated converter(MIC) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. Particularly, MIC system is very sensitive to the shadow influence because the capacity is very small. In order to increase an output and efficiency of the solar power generation, the maximum power point(MPP) obeying control are necessary. Conventional perturbation and observation(PO) and Incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, the new control algorithm of the multi-level in which the step value changes by output change is presented. In case there are the solar radiation, a temperature and shadow influence, the presented algorithm treats and compares the conventional control algorithm and output error. In addition, the validity of the algorithm is proved. through the output error response characteristics.

Temperature Control System Technology of Possible Output Error Detection with Expanded A/D Converting Technology (A/D 컨버터 확장기술을 응용한 온도제어장치 기술)

  • Park, Sung-Back;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.635-641
    • /
    • 2014
  • In this study, the temperature control device was designed for the study in order to detect the output in frequency of temperature, and the study confirmed accurate temperature values treated systemically by using expanded A/D converting Technology. The control technology of functional sensor included the output error Detection. For the future study, it is necessary to implement a control device by building multiple circuits integrally with different types of sensors such as a automatically and intelligent notification function sensors.