• 제목/요약/키워드: output delay

검색결과 778건 처리시간 0.028초

연산지연시간과 파라미터 변동에 강인한 UPS 인버터의 내부모델제어 (Internal Model Control of UPS Inverter with Robustness of Calculation Time Delay and Parameter Variation)

  • 박지호;계중읍;김동완;안영주;박한석;우정인
    • 전기학회논문지P
    • /
    • 제51권4호
    • /
    • pp.175-185
    • /
    • 2002
  • In this paper, a new fully digital current control method of UPS inverter, which is based on an internal model control, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The internal model controller is adopted to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. That is, the average current of filter capacitor is been exactly equal to the reference current with a time lag of two sampling intervals. Therefore, this method has an essentially overshoot free reference-to-output response with a minimum possible rise time. The effectiveness of the proposed control system has been verified by the simulation and experimental respectively. From the simulation and experimental results, the proposed system is achieved the robust characteristics to the calculation time delay and parameter variation as well as very fast dynamic performance, thus it can be effectively applied to the power supply for the critical load.

MPLS를 위한 트래픽 기반의 레이블 할당 기법 (Traffic Based Label Assign Technique For the MPLS)

  • 황하응;장성식
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권1호
    • /
    • pp.120-128
    • /
    • 2002
  • 최근 인터넷 방송이나 VOD와 같은 대용량 데이터 서비스에 대한 이용이 보편화되면서 네트?의 트래픽이 급증하고 있다. 이에 따라 발생하는 서비스의 지연문제를 해결하기 위해 대역폭의 확장뿐 아니라 망의 확장성을 해결할 수 있는 방안들이 모색되고 있다. 이러한 방안의 하나로서 MPLS는 망의 확장성과 고속의 라우팅을 지원하는 장점이 있으나 모든 패킷은 입구 노드에서 출구 노드까지 LSP가 설정 되기 전까지 지연이 발생한다. 본 논문에서는 이러한 지연 문제를 해결하기 위해 데이터가 MPLS 도메인을 거쳐 가야 할 경우 입구노드에서 출구 노드까지의 홉수에 따라 서로 다른 레이블 할당 기법을 사용하는 방안을 제안한다. 또한 제안된 방안을 사용했을 경우 어느 정도의 지연 감소를 얻을 수 있는지를 보였다.

  • PDF

ATM 스위치에서의 QOS 을 위한 효율적인 스케쥴링 기법에 관한 연구 (A Study on Efficient Scheduling Scheme for QoS in ATM Switch)

  • 이상태;김남희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.75-78
    • /
    • 1998
  • In this paper, we propose a new cell discarding and scheduling scheme which reduce cell loss rate by measuring, in real time, the number of discarded cells in the queuing system with a different loss priority for each class of service such that each class of service meets its cell loss rate requirements and reduce average delay rate for the traffic that is sensitive in cell delay in output buffer of the ATM switch. Throughout the computer simulation, the existing scheduling scheme and proposed scheme are compared with respect to cell loss rate and average delay time.

  • PDF

A 5-20 GHz 5-Bit True Time Delay Circuit in 0.18 ㎛ CMOS Technology

  • Choi, Jae Young;Cho, Moon-Kyu;Baek, Donghyun;Kim, Jeong-Geun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.193-197
    • /
    • 2013
  • This paper presents a 5-bit true time delay circuit using a standard 0.18 ${\mu}m$ CMOS process for the broadband phased array antenna without the beam squint. The maximum time delay of ~106 ps with the delay step of ~3.3 ps is achieved at 5-20 GHz. The RMS group delay and amplitude errors are < 1 ps and <2 dB, respectively. The measured insertion loss is <27 dB and the input and output return losses are <12 dB at 5-15 GHz. The current consumption is nearly zero with 1.8 V supply. The chip size is $1.04{\times}0.85\;mm^2$ including pads.

압반사 제어모델을 이용한 심혈관시스템 모델링 및 시뮬레이션 (Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model)

  • 최병철;전계록
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2004년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptor sensing the variance of pressure in the cardiovascular system, and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The proposed heart activity baroreflex regulation model contains electric circuit sub-model. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the cardiovascular system by variable value in time delay sub-model. As simulation results, we observe three patterns of the cardiovascular system variability by the time delay, First, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate is observed nonperiodically and observed. Finally, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory is maintained in stable state.

  • PDF

유도전동기의 직접토크제어 시스템에서 출력전압벡터선정을 위한 시간지연의 보상 (Time Delay Compensation for Output Voltage Vector Selection in Direct Torque Control of Induction Machine)

  • 최병태;박철우;권우현
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.632-639
    • /
    • 2003
  • This paper proposes a simple compensation scheme for the time delay caused by measurement, calculation and selection of voltage vector in Direct Torque Control (DTC) of an induction motor. In general scheme, it is difficult to know the exact delay time, furthermore the delay time can be varied by program routines for calculation and processing of measured data. In this proposed scheme, by applying voltage vector at the beginning of next sampling period, a fixed delay time is achieved and its compensation becomes much simpler. Furthermore, with the simple compensation algorithm, an improved performance can be achieved by shortening sampling period. Experimental results prove the feasibility of the proposed scheme in induction motor control.

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

지연된 다중 입력을 갖는 시스템을 안정화하는 출력 궤환 예측 제어 (An Output Feedback Predictive Control for Stabilizing a System With Multiple Delayed Inputs)

  • 양장훈
    • 한국항행학회논문지
    • /
    • 제23권5호
    • /
    • pp.424-429
    • /
    • 2019
  • 5G의 상용화 등 네트워킹 기술의 발전은 다양한 시스템들이 네트워크를 통해서 정보를 교환하고 제어할 수 있는 기반을 제공하고 있다. 또한, 네트워크에서 발생하는 많은 현상들은 정보의 지연과 관련되기 때문에 지연된 정보를 갖는 시스템의 제어의 중요성이 증가하고 있다. 본 논문에서는 최근들어 지연이 있을 때에 저복잡도 제어기 설계에 많이 활용되는 예측 제어를 도입하여, 지연된 다중 입력을 갖는 시스템에서 지연의 크기와 입력의 수에 상관없이 거의 일정한 복잡도를 갖는 예측 제어기를 제시한다. 또한, 출력 궤환 구조를 갖는 예측 제어기가 점근적 수렴이 보장됨을 증명한다. 모의 실험을 통해서 제안된 방식이 상태 벡터를 확장한 전통적인 방식이나, 다른 예측 기반 제어 방식에 비해 적은 복잡도를 가지면서 안정성을 보장하는 제어기 설계 성공이 높게 발생함을 확인하였다.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

Grant-Free Random Access in Multicell Massive MIMO Systems with Mixed-Type Devices: Backoff Mechanism Optimizations under Delay Constraints

  • Yingying, Fang;Qi, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.185-201
    • /
    • 2023
  • Grant-free random access (GFRA) can reduce the access delay and signaling cost, and satisfy the short transmission packet and strict delay constraints requirement in internet of things (IoT). IoT is a major trend in the future, which is characterized by the variety of applications and devices. However, most existing studies on GFRA only consider a single type of device and omit the effect of access delay. In this paper, we study GFRA in multicell massive multipleinput multiple-output (MIMO) systems where different types of devices with various configurations and requirements co-exist. By introducing the backoff mechanism, each device is randomly activated according to the backoff parameter, and active devices randomly select an orthogonal pilot sequence from a predefined pilot pool. An analytical approximation of the average spectral efficiency for each type of device is derived. Based on it, we obtain the optimal backoff parameter for each type of devices under their delay constraints. It is found that the optimal backoff parameters are closely related to the device number and delay constraint. In general, devices that have larger quantity should have more backoff time before they are allowed to access. However, as the delay constraint become stricter, the required backoff time reduces gradually, and the device with larger quantity may have less backoff time than that with smaller quantity when its delay constraint is extremely strict. When the pilot length is short, the effect of delay constraints mentioned above works more obviously.