• Title/Summary/Keyword: outflows

Search Result 234, Processing Time 0.027 seconds

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

Fluctuation of Environmental Factors and Dynamics of Phytoplankton Communities in Lower Part of the Han River (한강 하류에서 환경요인의 변동과 식물플랑크톤의 군집 동태)

  • Suh, Mi-Yeon;Kim, Baik-Ho;Bae, Kyung-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.395-402
    • /
    • 2007
  • Concentrative samplings of 35 times on standing crops of phytoplankton and physicochemical factors were conducted at five sites over Seongsu Bridge to Seongsan Bridge in lower parts of the Ban River from January to December 2006. Over the study, all physicochemical factors showed no large differences among the sampling sites except station 2 having high concentrations of BOD, TN, and TP. Heavy rain also cause these concentrations to decrease. The phytoplankton species and abundance (88 taxa and $1{\sim}41$,104 cells $mL^{-1}$) were varied according to the season, and sharply decreased during heavy rains. In particular, cyanobacteria dominated the phytoplankton community during dry seasons, while green algae and diatom dominated during the rainy seasons. However, after the termination of rain, high water temperatures over $20^{\circ}C$ and low N/P ratios $(9.4{\sim}18.9)$ evoked the cyanobacterial bloom. These results indicate that although the heavy rain (huge outflows of Paltang Dam) temporarily diluted the nutrient level and effected the cyanobacterial bloom in the lower parts of the Han River, cyanobacterial abundance was recovered by the high temperature and low N/P ratio as the rainfall discontinued.

A Study of Sewer Layout to Control a Outflow in Sewer Pipes (우수관거 흐름 제어를 위한 관망 설계에 관한 연구)

  • Kim, Joong-Hoon;Joo, Jin-Gul;Jun, Hwan-Don;Lee, Jung-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Most developed models are designed to determine pipe diameter, slope and overall layout in order to minimize the cost for the design rainfall for the optimal sewer layout. However, these models are not capable of considering the superposition effect of runoff hydrographs in the sewer pipes. The flow characteristics in the sewer pipes, such as the sewer layout, pipe diameter and slope, vary according to the design of the sewer system. In particular, when the sewer network is modified, the shapes of the runoff hydrographs in the sewer pipes also change because of the superposition effect. In this study, the sewer layout is designed to control and distribute the flows in the sewer pipes, while considering the runoff superposition effect, in order to reduce the inundation risk at each junction. This is accomplished by separating the inflows that enter into each junction by changing the way in which pipes are connected between junctions. And this model combines SWMM (Storm Water Management Model) to perform the hydraulic analysis for the flows in the sewer network. The current sewer layout was modified to minimize the peak outflow at outlet in Garak basin, Seoul, South Korea. As the results, the peak outflows at the outlet were decreased by approximately 20% for the design rainfall during 30 minutes and the total overflows were also decreased for the excessive rainfalls.

Study on Estimation Method of Water Cycle Goal in Waterfront City (수변도시의 물순환 목표 산정 방안 연구)

  • Kim, Jae-Moon;Baek, Jong-Seok;Shin, Hyun-Suk;Park, Kyoung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.475-487
    • /
    • 2020
  • The current water-management paradigm is changing from the expansion of reservoirs and facilities for simple outflows and non-point source management to the building of a sound water circulation system throughout the watershed. Based on this, water management for the watershed as a whole is establishing standards through local ordinances. The purpose of this study is to establish water cycle targets that are resilient to water management even after the development of cities in watersheds where water management is highly needed. This was done by referring to research and ordinances related to water circulation by local governments. A method is proposed based on a storage and infiltration method for rainfall. Through a comparison of percentiles, it was found that the water circulation target of a planned waterside city can be treated with 52% of total rainfall and 80% of rainfall of 17 mm per day. To quantitatively improve the quality results of these calculation procedures, it is estimated that the calculation of water cycle targets will be more reliable if other various variables such as the safety of low impact development factors or the selection of appropriate specifications are considered later.

Re-evaluation of Soyang Dam inflow based on modifying a simple water balance method considering evaporation (증발량을 고려한 단순 물수지 방정식 개선을 통한 소양강댐 유입량의 재평가)

  • Yoo, Jiyoung;Lee, Dong Jin;Yoo, Do-Guen;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.461-469
    • /
    • 2022
  • It is very important to ensure the reliability of dam inflow data, which is critical in planning and managing the supply and demand of water resources in a basin. However, the simple water balance model sometimes results in negative inflows and does not consider the actual inflow characteristics. In this study, to address these issues, the existing water balance formula was modified by considering evaporation which is available for calculation among other outflows. The modified water balance formula was applied to the Soyang Dam. The results showed that the rate of negative inflows decreased in the re-evaluated dam inflow data and it was possible to secure consistency for the total inflow volume. In addition, investigating the water availability in the Soyang Dam watershed based on the water balance concept considering evaporation, it was found that direct water use in the human aspect was about 60%, and the indirect water use in the natural aspect was about 40%. In drought years, it was also confirmed that the proportion of indirect use of water resources increased.

Effects of Vegetation on Pollutants and Carbon Absorption Capacity in LID Facilities (LID시설에서의 오염물질 및 탄소흡수능에 식생이 미치는 영향)

  • Hong, Jin;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • As the impermeable area of soil increases due to urbanization, the water circulation system of the city is deteriorating. The existing guidelines for low impact development (LID) facilities installed to solve these water problems or in previous studies, engineering aspects are more prominent than landscaping aspects. This study attempted to present an engineering and landscaping model for reducing pollutants by identifying the effects of vegetation on rainfall outflows and pollutant reduction in bioretention and the economic aspects of planting. Based on the results of artificial rainfall monitoring at Jeonju Seogok Park and the literature on vegetation rainfall runoff and pollutant reduction performance, the best vegetation for reducing pollution compared to cost was Lythrum salicaria L and Salix gracilistyla Miq. was the best vegetation for carbon storage. If you insist to design plants with only these two plantation, there is no choice but to take risks such as biodiversity. Herbaceous plants such as Lythrum salicaria L can be replaced by death of the plants or pests if considered planting various plants. The initial planting cost could expensive, but it is also necessary to mix and plant Salix gracilistyla Miq, which are woody plants that are advantageous in terms of maintenance, according to the surrounding environment and conditions. Based on the conclusions drawn in this study, it can be a reference material when considering the reduction of pollution by species and carbon storage of vegetation in LID facilities.

Time-series Change Analysis of Quarry using UAV and Aerial LiDAR (UAV와 LiDAR를 활용한 토석채취지의 시계열 변화 분석)

  • Dong-Hwan Park;Woo-Dam Sim
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.34-44
    • /
    • 2024
  • Recently, due to abnormal climate caused by climate change, natural disasters such as floods, landslides, and soil outflows are rapidly increasing. In Korea, more than 63% of the land is vulnerable to slope disasters due to the geographical characteristics of mountainous areas, and in particular, Quarry mines soil and rocks, so there is a high risk of landslides not only inside the workplace but also outside.Accordingly, this study built a DEM using UAV and aviation LiDAR for monitoring the quarry, conducted a time series change analysis, and proposed an optimal DEM construction method for monitoring the soil collection site. For DEM construction, UAV and LiDAR-based Point Cloud were built, and the ground was extracted using three algorithms: Aggressive Classification (AC), Conservative Classification (CC), and Standard Classification (SC). UAV and LiDAR-based DEM constructed according to the algorithm evaluated accuracy through comparison with digital map-based DEM.

Policy Study on Korean Retail Micro Business (국제 비교를 통한 소매업 소상공인 현황과 정책적 시사점)

  • Suh, Yong Gu;Kim, Suk Kyung
    • Journal of Distribution Research
    • /
    • v.17 no.5
    • /
    • pp.39-57
    • /
    • 2012
  • The unabated influx of micro businesses has turned the Korean retailing market to a rat race, which causes severe financial distress for micro business owners due to heavy competition. The woes of these micro business owner's are exacerbated by the presence of large scale distributors such as Super Supermarket(SSM) and large discount stores. In summary, the Korean retail market is overburdened an uneconomically viable. Retailing has low barriers to entry which attracts unskilled labor or those with little capital. These start-ups have low opportunity costs since they would make low wages elsewhere in the economy. Thus, these owners are content with relatively low returns on their investment. These 'subsistence ventures' are maintained for economical viability rather than economic growth. These 'subsistence ventures' intensifies competition among small-scale businesses. The presence of large retail corporations also aggravates the situation. The recent stagnation of the economy has worsened the retail market in Korea. The overwhelming competition solidifies the coarse structural system and the prolonged economic sluggishness has increased the risk of insolvency for micro business owners. As the economy continues to stagnate, the imminent risk in retailing market will rise up to surface threatening economic stability. More systematic inflows and outflows of retailers are required in order to redress this structural problem. It has been empirically shown that the self-employment rate is high in Korea compared to other OECD countries. To draw the comparison of self-employment rate by industry, Korea shows high rates among transportation, whole sale, retail, education, lodging, and restaurants. In the case of the transportation and education service sectors, this high rate can be explained by the idiosyncratic nature of Korean culture. In the transportation sector, political policies favor private cap service and private freight carriers. In the education service sector, Koreans put particular emphasis on education that leads to many private institutions that outnumber other OECD countries. For these singular reasons, Korea maintains high micro business, self-employed rates particularly in retailing. A comparable nation is Japan, with its similar social, economic, cultural environment among OECD countries. Unlike Korea, Japan has much lower rates of micro business which continues to decrease. Also Korean retailers are much more destitute than Japanese. The fundamental problem of Korean retailing is the involuntary exit of these 'subsistence ventures,' micro businesses with low margins, in which a small drop in demand can lead to financial difficulties for the owner. This problem will be exacerbated when Korean babyboomers retire and join the micro business ventures. The first priority in order to cope with the severity of oversupply in retailing is to provide better opportunities for the potential self-employers. There should be viable alternatives to subsistent ventures. Strengthening the retirement program, scrutiny of exit process, reconfiguration of policy funds are the recommendations.

  • PDF

Variation and Forecast of Rural Population in Korea: 1960-1985 (농촌인구(農村人口)의 변화(變化)와 예측(豫測))

  • Kwon, Yong Duk;Choi, Kyu Seob
    • Current Research on Agriculture and Life Sciences
    • /
    • v.8
    • /
    • pp.129-138
    • /
    • 1990
  • This study investigated the relationship between the cutflow of rural population and agricultural policy by using time series method. For the analytical tools, decomposition time series methods and regression technique were employed in computing seasonal fluctuation and cyclical fluctuation of population migration. Also, this study predicted farmhouse, rural population till the 2000's by means of the mathematical methods. The analytical forms employed in forecasting farmhouse, rural population were Exponential curve, Gompertz curve and Transcendental form. The major findings of this study were identified as follows: 1) Rural population and farmhouse population began to decrease from 1965 and hastily went down since 1975. Rural population which accounted for 36.4 percent, 35.6 percent of national population respectively in 1960 diminished about two times: 17.5 percent, 17.1 percent respectively. 2) The rapid decreasing of the rural population was caused because of the outflow of rural people to the urban regions. Of course, that was also caused from the natural decreases but the main reason was heavily affected more the former than the latter. In the outflowing course shaped from rural to the urban regions, rural people concentrated on such metropolis as Seoul, Pusan, Keanggi. But these trends were diminishing slowly. On the other hand, compared with that of the 1970's the migration to Keanggi was still increasing in the 1980's. That is, people altered the way of migration from the migration to Seoul, Pusan to the migration to the out-skirts of Seoul. 3) The seasonal fluctuation index of population migration has gone down since the June which the request of agricultural labor force increases and has turned to be greatly wanted in the March as result of decomposition time series method. As result of cyclical analysis, the cyclical patterns of migration have greatly 7 cycle. 4) As result of forecasting the rural and farmhouse population, rural and farmhouse population in the 2000 will be about 9,655(thousand/people) and 4,429(thousand/people) respectively. Thus, it is important to analyze the probloms that rural and farmhouse population will decrease or increase by the degree. But fairly defining the agricultural into a industry that supply the food, this problem - how much our nation need the rural and farmhouse population - is greatly significant too. Therefore, the basic problems of the agricultural including the outflows of rural people are the earning differentials between rural and urban regions. And we should regard the problems of the gap of relative incomes between rural and urban regions as the main task of the agricultural policy and treat the agricultural policy in the viewpoint of developing economic equilibrium than efficiency by using actively the natural resources of the rural regions.

  • PDF

Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea (대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향)

  • Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Daecheong Reservoir was made by the construction of a large dam (>15 m in height) on the middle to downstream of the Geum River and the discharge systems have the watergate-spillway (WS), a hydropower penstock (HPP), and two intake towers. The purpose of this study was to investigate the limnological anomalies of turbid water reduction, green algae phenomenon, and oligotrophic state in the lower part of reservoir dam site, and compared with hydro-meteorological factors. Field surveys were conducted in two stations of near dam and the outlet of HPP with one week intervals from January to December 2000. Rainfall was closely related to the fluctuations of inflow, outflow and water level. The rainfall pattern was depended on the storm of monsoon and typhoon, and the increase of discharge and turbidity responded more strongly to the intensity than the frequency. Water temperature and DO fluctuations within the reservoir water layer were influenced by meteorological and hydrological events, and these were mainly caused by water level fluctuation based on temperature stratification, density current and discharge types. The discharges of WS and HPP induced to the flow of water bodies and the outflows of turbid water and nutrients such as nitrogen and phosphorus, respectively. Especially, when hypoxic or low-oxygen condition was present in the bottom water, the discharge through HPP has contributed significantly to the outflow of phosphorus released from the sediment into the downstream of dam. In addition, HPP effluent which be continuously operated throughout the year, was the main factor that could change to a low trophic level in the downreservoir (lacustrine zone). And water-bloom (green-tide) occurring in the lower part of reservoir was the result that the water body of upreservoir being transported and diffused toward the downreseroir, when discharging through the WS. Finally, the hydropower effluent was included the importance and dynamics that could have a temporal and spatial impacts on the physical, chemical and biological factors of the reservoir ecosystem.