• Title/Summary/Keyword: outflow velocity

Search Result 128, Processing Time 0.025 seconds

A Numerical Model Study of the Coastal Ocean Flow Due to the Turbulence Parameterization (亂流의 媒介變數化에 따른 沿岸流의 수치모델)

  • YOU, KWANG WOO
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.50-63
    • /
    • 1994
  • A three-dimensional time-dependent coastal ocean model experiment of two different turbulence parameterizations is conducted. One of the turbulence parameterization is the constant eddy-mixing formulation, C1, and the other a stratification dependent eddy-mixing formulation, C2. The flow in C2 in strongly baroclinic, and limits vertical mixing of fresh and saline waters. The outflow discharged from an estuary is highly inertial and form a strong front of plume in C2 than that in C1. Because of the stronger outflow in C2, supercritical flow state, for which the near surface outflow velocity exceeds the baroclinic phase speed, can exist off the mouth of the estuary. The adjustment process of flow in the less saline waters are quite different for C1 and C2, which is dictated by the strongly baroclinic nature of the flow in C2.

  • PDF

Mass Balance of Perfluorooctane sulfonates in a Semi-enclosed Bay, Korea

  • Heo, Min Ji;Roh, Kyong Joon;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.969-979
    • /
    • 2020
  • A numerical simulation was conducted on perfluorooctane sulfonate (PFOS) in the Gwangyang Bay using a multi-box model to estimate the transport of organic chemicals in the coastal environment. The results of the sensitivity analysis on dissolved PFOS and PFOS in Particulate Organic Carbon (POC) indicate that they were most significantly influenced by the adsorption rate, desorption rate, and sinking velocity coefficients. PFOS in phytoplankton was found to be sensitive to bio-concentration and the excretion rate. The results of the mass balance indicate that the standing stocks of PFOS in water, POC, and phytoplankton are 345.55 g, 63.76 g, and 0.11 g, respectively, in the inner part and 149.90 g, 27.51 g, and 0.05 g, respectively, in the outer part. Considering flux in the inner part, adsorption to POC had the highest value among transition paths. The next highest were desorption, outflow to the outer part, and inflow to the inner part. Outflow into the open sea was found to have the highest value for the outer part.

High-resolution near-IR Spectral Mapping of Multiple Outflows around LkHα 234 in NGC 7129 Star Forming Region

  • Oh, Heeyoung;Pyo, Tae-Soo;Koo, Bon-Chul;Yuk, In-Soo;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2017
  • We present the observational study toward the multiple outflows around $LkH{\alpha}$ 234 star formation region. The high-resolution, near-IR spectral mapping using the Immersion Grating Infrared Spectrograph (IGRINS) allowed us to distinguish at least four separate outflows with the molecular hydrogen ($H_2$) and forbidden iron ([Fe II]) emission lines. The outflow associated with the radio continuum source VLA 3B is detected in both H2 and [Fe II] emission, while the outflows driven by MM 1, VLA 2 sources were only detected in $H_2$, indicating the different physical conditions of outflows. We confirm the axis of VLA 3B jet, the position angle of ${\sim}240^{\circ}$. We firstly identified the redshifted, near-IR H2 outflow associated with VLA 2, which is coincident with the previous detections of $H_2O$ masers. From the $H_2$ line ratios, we interpret the gas properties of the shock excited blue- and redshifted components, and UV excited surrounding photodissociation region. We also discuss the origin of the high-velocity (|VLSR| > $150km\;s^{-1}$) $H_2$ emission.

  • PDF

The CO outflow survey toward the Very Low Luminosity Object candidates: a progress report

  • Kim, Gwanjeong;Lee, Chang Won;Kim, Mi-Ryang;Kazuhiro, Kiyokane;Saito, Masao
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2014
  • We present the preliminary results of CO outflow survey toward the 56 Very Low Luminosity Object (VeLLO) candidates at CO J=2-1 and J=3-2 transitions with two radio telescopes of the Caltech Submillimeter Observatory (CSO) and the Atacama Submillimeter Telescope Experiment (ASTE). The survey is aimed to understand the origin of the formation of low-mass stars or substellar objects. The VeLLO is a very faint (${\leq}0.1$ $L_{\odot}$) object deeply embedded in dense molecular clouds and believed to be a proto-brown dwarf which will be a brown dwarf or a faint protostar which has just formed with little mass accretion or which is in quiescent stage of episodic accretion. The candidates were searched for over all nearby ($d{\leq}450$ pc) Gould belt clouds and listed in a new catalogue of the VeLLO candidates by Kim et al. (2014 submitted). To diagnose present status and future fate of the VeLLOs, we conducted a systematic observation for the CO molecular outflows of the 56 VeLLOs to infer how accretion is being made around the VeLLOs. We found 17 VeLLO candidates either having a prominent wing in line profiles or showing bipolar intensity distribution of high velocity components. We will discuss the physical properties of these CO outflows and the identity of the VeLLO candidates.

  • PDF

Numerical prediction of a flashing flow of saturated water at high pressure

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1173-1183
    • /
    • 2018
  • Transient fluid velocity and pressure fields in a pressurized water reactor (PWR) steam generator (SG) secondary side during the blowdown period of a feedwater line break (FWLB) accident were numerically simulated employing the saturated water flashing model. This model is based on the assumption that compressed water in the SG is saturated at the beginning and decompresses into the two-phase region where saturated vapor forms, creating a mixture of steam bubbles in water by bulk boiling. The numerical calculations were performed for two cases of which the outflow boundary conditions are different from each other; one is specified as the direct blowdown discharge to the atmosphere and the other is specified as the blowdown discharge to an extended calculation domain with atmospheric pressure on its boundary. The present simulation results obtained using the two different outflow boundary conditions were discussed through a comparison with the predictions using a simple non-flashing model neglecting the effects of phase change. In addition, the applicability of each of the non-flashing water discharge and saturated water flashing models for the confirmatory assessments of new SG designs was examined.

Spectral Analysis of the Seyfert Galaxy NGC 4051 and Mrk 79

  • Park, So-Yeong;Hyung, Siek;Son, Donghoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.32.4-33
    • /
    • 2018
  • We study the kinematical properties of the Seyfert galaxy, NGC 4051 and Mrk 79. The data used in this study had been observed with OASIS spectrometer at CFHT 3.6m telescope using O300 grism, MR1. The wavelength coverage is $4760{\AA}$ $-5558{\AA}$, which includes emission lines, $H{\beta}4861{\AA}$, $[OIII]4959{\AA}$, and $[OIII]5007{\AA}$. We observe that forbidden lines have both narrow and broad components. Radial velocity of NGC 4051 is blue-shifted, perhaps due to the z value derived by the earlier studies, 0.002336. We use the revised z, 0.002099, according to the radial velocity of the central spectrum. NGC 4051 is face-on galaxy without rotation observed. Radial velocity of Mrk 79 shows a rotation characteristic in narrow components, relative to $PA=60^{\circ}$, red-shifted to north-west, and blue-shifted to south-east. In the [OIII] broad components, blue-shifted points are observed at the place at 2 arcsec apart from the center of Mrk 79 to north-west, which are likely to be gas outflow.

  • PDF

The Relationship between Algae Transport and Current in the Daecheong Reservoir (대청호 유속에 따른 조류이동 영향)

  • Yu, Soon-Ju;Hwang, Jong-Yeon;Chae, Min-Hi;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.887-894
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom every year. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir during the wet season. Nutrients from diffuse sources trigger the propagation of the algal bloom. This study is aimed to analyze relationship between the water current by the simulation and algae transport from the main body in the Daecheong reservoir including tributary where algal bloom has occurred seriously every year. Water quality model CE-QUAL-W2 was applied to analyze water movement in draught season (2001) and flooding season (2003). The result of simulation corresponded with the observed water elevation level, 63~80 m and showed stratification of the Daecheong reservoir. In the draught season, as velocity and direction off low in the reservoir was estimated to affect algae transport including nutrient supply from small tributary, algal blooms occurred in the stagnate zone of middle stream of the reservoir. On the other hand, in the flooding season, it was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. In result, algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control.

Flow Analysis of Rivers by using FESWMS-2DH (FESWMS-2DH를 이용한 하천의 흐름 해석)

  • Lee, Cheol-Eung;Shim, Jae-Wook;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.111-122
    • /
    • 2009
  • In this study, flood stage was computed by HEC-RAS, 1-D numerical analysis model and FESWMS-2DH, 2-D numerical model. Flood stages computed by two different models were compared for straight line, dot axle watercourse, dead-zone watercourse, section sudden-changing watercourse, and curved watercourse. From the results, flow velocity and water level were similar in straight watercourse and dot-reduction watercourse. However, there was difference of flow velocity and water level in dead-zone watercourse, sudden expansion, dot-reduction, and curve-watercourse. This result might be influenced by rapid change of watercourse due to dead-zone, the angle of inflow and outflow, and the curvature. Especially in this study, numerical model was applied to Wol-Song-Cheon at Chuncheon in order to analyze the effect of flood stage by two different models. By flowing properties around the bridge and confluence of rivers, it was found that flow velocity and water level was changed. Therefore, it was concluded that a lot of uncertainties are contained in the present bank.

  • PDF

Flow Characteristics of Turbulent Oscillatory Flows in the Exit Region Connected to $180^{\circ}$Curved Duct ($180^{\circ}$ 곡관덕트에 연결된 출구 영역에서 난류 진동유동의 유동특성)

  • 김대욱;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.817-824
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flows in the exit region connected to the square-sectional $180^{\circ}$curved duct was investigated experimentally. The experimental study for air flows was conducted to measure velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(L.D.V) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from the experimentation were summarized as follows : The critical Reynolds number for a change from transitional oscillatory flow to turbulent oscillatory flow was about 75,000 in the 90 region of dimensionless axial position (x/Dh) which was considered as a fully developed flow region. In the turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Shear stress distributions of turbulent oscillatory flow was gradually increased as the flow proceeds to downstream.

  • PDF

Analysis of Alteration for Water Level and Velocity in Tidal Artificial Lake Installed Water Gate and Adoption of Proper Channel Width (적정 수로 폭의 선정과 수문이 설치된 인공 해수호수의 수위 및 유속의 변화 분석)

  • Jang, Changhwan;Kim, Hyoseob;Jang, Sukhwan;Ihm, Namjae
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.289-301
    • /
    • 2012
  • Tidal artificial lake capable of inflow and outflow of seawater is planned for waterfront and eco-friendly space at Songdo, Incheon, Korea. This study for hydrodynamic behaviors of tidal artificial lake was carried out and predicted about water level and velocity within the lake corresponding to width of channel or waterway using by 1 dimensional numerical model(CEA) and 2 dimensional numerical model(FLOW2DH). As a result, the proper width, 100.0m of the channel between the lake and the open sea was calculated reasonable conclusions such as tidal phase lag and maximum velocity from CEA. Also, water level and velocity of each point within the lake was predicted and compared to the measured data from FLOW2DH. FLOW2DH was added to the gate control case for maintenance and administration purpose of the lake and obtained the results that the velocity was decreased by approximately 20% at flood and 50% at ebb than the case without gate control.