• Title/Summary/Keyword: outflow load

Search Result 53, Processing Time 0.028 seconds

Wastewater Flowrate Analysis of Drainage Basin for Application of Total Water Pollution Load Management System (수질오염총량관리제도 적용을 위한 도시유역의 하수발생량 분석)

  • Kwon, Jun-Hee;Park, In-Hyeok;Ha, Sung-Ryoung
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.75-82
    • /
    • 2009
  • The regulation of emission concentration for stream water qualities doesn't control quantitative increase on pollution loads, it has limits for improvement of water qualities. Total water pollution load management system(TMDL) can control the total amount of pollutant in waste water which is allowed to assign and control the total discharged pollutant loads in a permissible level. When it comes to generated wastewater value of TMDL system, there is difference between calculated value based on individual pollutant unit load and observed value. Calculated sewer inflow, calculated sewer outflow, measured sewer inflow, and measured sewer outflow at dry season are $26,460.9m^3$/d, $17,778.6m^3$/d, $17,106.1m^3$/d and $19,033.9m^3$/d respectively, Calculated sewer inflow, calculated sewer outflow, measured sewer inflow, and measured sewer outflow at rainy season are $49,512.2m^3$/d, $18,628.7m^3$/d, $30,918.2m^3$/d, $19,700.7m^3$/d respectively. This result presents the necessity to acquire the precise observed data to fulfill the efficient TMDL system.

  • PDF

Estimation of the Unit Load by the Outflow Characteristics of Non-Point Source Pollution in the Upstream Watershed of So-yang Lake (소양호 상류유역의 비점오염원 유출특성에 의한 원단위 산정)

  • Choi, Han-Kuy;Park, Soo-Jin;Kim, Jin-Soo
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.37-46
    • /
    • 2005
  • From 2000 to 2004, the research was carried out at Naerin-cheon and Inbook-cheon, the upper streams of Soyang Lake, to study the relationship between precipitation and eutrophication-causing water pollutants, BOD, T-N and T-P. During the five years, the amount of flowing water was measured, and the water quantity was examined under different precipitation levels. From the observation, outflow patterns of the water pollutants and changes in the water quality factors at the time of rainfall were clarified. In addition, estimation of the unit load was made for each stream; for Naerin-cheon at the time of rainfall, we estimated BOD to be $1,112kg/km^2/year$, T-N to be $2,077kg/km^2/year$, and T-P to be $223kg/km^2/year$; for Inbook-cheon at the time of rainfall, we estimated BOD to be $1,229kg/km^2/year$, T-N to be $1,565kg/km^2/year$, and T-P to be $255kg/km^2/year$. For the time of no rainfall different estimation was made; for Naerin-cheon, we estimated BOD to be $2,403g/km^2/day$, T-N to be $5,004g/km^2/day$, and T-P to be $53g/km^2/day$; and for Inbook-cheon, we estimated BOD to be $1,550g/km^2/day$, T-N to be $2,283g/km^2/day$, and T-P to be $42g/km^2/day$.

  • PDF

A Study on Pollution Property of Urban River Inflow in Regulating Reservoir (조정지댐에 유입하는 도시하천 오염특성에 관한 연구)

  • Chang, In-Soo;Park, Ki-Bum;Lee, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.935-943
    • /
    • 2006
  • This study focuses on analyzing the inflow characteristic of contaminants of city water that flows into a main water system like a reservoir, and intends to provide basic data which can be efficiently reflected on water quality management policy and decision making of a reservoir. The conclusion obtained from the analysis of the inflow of a main water system by analyzing the inflow property of city water contaminants is as follows. In the case of Chungju-cheon stream which is the city water, pollution load from the basic outflow is low when it rains, and with high load of basic outflow during the dry season, due to the discharge of pollutants from the city, the quality of water becomes worse. In the case of Chungju-cheon stream, average BOD is $4.53mg/{\ell}$ when it rains, and the contaminants increase and flow in about 7.8% compared to the average BOD during the average droughty season. The average SS concentration in water is $798.67mg/{\ell}$ and increased 97.2% compared to the average droughty season.

Seasonals Pollutant Outflow Analysis in the Watershed of Soyang Lake by using Multivariate Analysis (다변량 분석을 이용한 소양호 유역의 계절별 오염물질 유출 해석)

  • Park, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3726-3734
    • /
    • 2012
  • This study evaluated the behavior of pollutants based on the seasonal change by selecting the branch river's factors that influence the outflow of pollutants in Soyang lake basin. The analysis method was the factor analysis that classified the factors of the drainage area influencing the outflow of pollutants, and evaluated selected representative factors. As a result of the study, SS and T-P factors should be classified as similar factors to the storm water runoff, and the improvement of water must be strived through managing source of pollution at the time of no rain. Second, as the result of the influence from the factors, spring and winter seasons usually exert 36% influence and summer and fall exert over 90% significant influence that the improvement of water through managing source of water seems possible. At last, the prediction about delivery pollution load considering the outflow characteristic of pollutants at the drainage area based on seasonal change by regarding selected factors as independent variables is possible.

Salinity Routing Through Reservoir using WRAP-SALT (WRAP-SALT를 이용한 저수지 염분 추적)

  • Lee, Chi-Hun;Ko, Taek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.221-221
    • /
    • 2012
  • The WRAP-SALT (Water Rights Analysis Package-SALT) simulation includes computation of end-of-month reservoir storage concentrations and mean monthly reservoir outflow concentrations for each month of the simulation. The model computes reservoir storage loads and concentrations based on load balance accounting algorithms and computes concentrations of water released and withdrawn from a reservoir as a function of the volume-weighted mean concentration of the water stored in the reservoir in the current month or previous months. A load budget accounting of the various component load inflows and outflows entering and leaving a reservoir is performed. A time history of storage concentrations computed for previous months is maintained for use in the lag procedure. This study presents computational methods for routing salinity through reservoirs for incorporation into WRAP-SALT simulation routines and methods for determining values for the parameters of the routing methods.

  • PDF

Management of Water Quality of Embayments in Daechong Reservoir (대청호 정체수역의 수질예측과 관리)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.33-45
    • /
    • 1994
  • Water quality of Chongju and Daejeon Water Intake Tower Region, embayments in Daechong Reservoir was found to be worse than that of main lake after analysis of water which were sampled during April, July, October in 1993. Concentration of COD and SS at those two water intake tower sites were 2.8-5.6 mg/l and 2.2-3.2 mg/l, higher than that of main lake. T-N concentration of those two sites was 1.1-1.9 mg/l similar to that of main lake, and T-P concentration of those two sites was 0.14-0.18 mg/l, higher than that of main lake. This study used water quality model of embayment which can analyse pollutant loads from stream and surrounding land use, advection, decay, and diffusion transport between embayment and main lake. The model can predict water quality of embayment according to the change of pollutant load, water elevation of embayment, quantity of water intake in order to suggest water quality management. This study suggests embayment water quality management alternatives, 1) construction of waste water treatment facilities at embayment and main lake for the decrease of pollutant loading, 2) water intake at main lake less polluted or eutrophicated than embayment, and 3) outflow elevation selection for polluted hypolimnion water outflow during stratification.

  • PDF

An estimation method for the maintenance timing of the infiltration trench (침투도랑 시설의 유지관리 시점 산정방법에 관한 연구)

  • Lee, Seung Won;Cha, Sung Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • To manage the non-point source pollution and restore the water circulation, many technologies including infiltration or reservoir systems were installed in the urban area. These facilities have many problems regarding maintenance as their operation period becomes lengthier. The purpose of this study was to estimate the optimal maintenance timing through a long-term load test on the infiltration trench as one of the low impact development techniques. An infiltration trench was installed in the demonstration test facility, and stormwater was manufactured by Manual on installation and operation of non-point pollution management facilities from the Ministry of Environment, Korea and entered into the infiltration trench. Particle size distribution (PSD), suspended solids (SS) removal efficiency, and infiltration rate change tests were performed on inflow and outflow water. In case of the PSD, the maximum particulate size in the outflow decreased from 64 ㎛ to 33 ㎛ as the operating duration elapsed. The SS removal efficiency improved from 97 % to 99 %. The infiltration rate changed from 0.113 L/sec to 0.015 L/sec during the operation duration. The maintenance timing was determined based on the stormwater runoff requirements with these changes in water quality and infiltration rate. The methodologies in this study could be used to estimate the timing of maintenance of other low impact development techniques.

Analysis of Nutrient Load Balance in the Reservoir Irrigated Paddy Block (저수지 관개 광역 논의 영양물질 수지 분석)

  • Song, Jung-Hun;Kang, Moon-Seong;Song, Inhong;Hwang, Soon-Ho;Park, Jihoon;Jun, Sang-Min;Kim, Kye-Ung;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.167-175
    • /
    • 2013
  • The objective of this study was to investigate the nutrient load balance in the reservoir irrigated paddy block during growing seasons. Idong reservoir irrigation paddy block of 10.3 ha in size was selected to collect hydrologic and water quality data. Irrigation, canal flows, and paddy field drainage were measured using a water level gauge, while water samples were collected and analysed for water quality. The water balance analysis showed that 81 % and 75 % of total outflow were through paddy and irrigation canal drainage during 2011 and 2012, respectively. The water quality of paddy field drainage varied greatly depending on rice cultivation stage ranging from 0.05 to 24.55 mg/L and from 0.01 to 0.76 mg/L for T-N and T-P, correspondently. Paddy field drainage loads during May through June account for 64 % and 76 % in 2012 and 2013, while 82 % and 81 % for T-P in 2011 and 2012, respectively. The Pearson correlation analysis showed that rainfall was significantly correlated with nutrient loads during July through August due to runoff, and irrigation was related with nutrient loads of drainage during some period of July through September due to irrigation return flow. This study results showed characteristics of inflow and outflow nutrient loads from plentiful irrigated paddy block.

Characteristics and Unit Load of Pollutants at a Paddy Field Area with Large-Scaled Plots (대구획 광역논에서의 오염부하특성과 원단위)

  • Kim, Kyu-Seong;Kim, Jin-Soo;Oh, Seung-Young;Yoon, Chun-Gyeong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.390-393
    • /
    • 2001
  • Mass balance and unit load of pollutants were investigated at paddy field area during irrigation periods in 1999 and 2000. The amounts of irrigation water during irrigation periods were 3,690mm in 1999 and 3,160mm in 2000. The concentration of surface outflow is not so high as that of irrigation because 44% of irrigation water discharge without entering the paddy plots. The unit loads of pollutants during irrigation periods were estimated 19.2kg/ha for T-N, 0.29kg/ha for T-P and 47.5kg/ha for COD.

  • PDF

Hemodynamic Modeling of the Pulsatile Cardiac Pulmonary Perfusion for the Patient's Heart (환자의 박동형 심장의 폐순환 혈류 모델링에 대한 연구)

  • Kim, J.S.;Kim, M.S.;Choi, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1679-1682
    • /
    • 2008
  • Pulsatile Extracorporeal Membrane Oxygenation(ECMO) can mitigate the heart load and raise the patient's blood perfusion. But If the ECMO pulsate the blood flow during the systolic period, It can burden to the patient's heart. To avoid the heart injury, we have to consider the relation between output of ECMO, hemodynamic states and heart movement. To raise the efficacy of the pulsatile ECMO, we investigated the coronary perfusion, cardiac muscle tension and hemodynamic states during the ECMO perfusion by using the mathematical model of human blood circulatory system and ECMO. The outflow data of the pulsatile ECMO(T-PLS, Bioheartkorea, Korea) was obtained in vitro experiments. According to the phase and pumping rate of the ECMO, the heart's load and coronary perfusion could be adjusted to the proper levels. The results of the human- ECMO lumped parameter model showed that the synchronizing operation of the pulsatile ECLS can be helpful at stabilizing the patient's hemodynamic states.

  • PDF