• Title/Summary/Keyword: outer membrane biogenesis

Search Result 5, Processing Time 0.019 seconds

Electron Microscopic Evidence of Paraporal Crystal Inclusion Biogenesis in Bacillus sphaericus Strain 1593

  • Lee, Young-Ju;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1106-1110
    • /
    • 2001
  • The parasporal biogenesis of crystal inclusion during the sporulation of Bacillus sphaericus strain 1593 was observed using transmission electron microscopy. The crystal biogenesis and sporulation process involved a sequence of events talking about 10 h. The sporulation Precesses were found to be similar to previous findings. The crystal biogenesis of B. sphaericus was initiated at the start of engulfment and nearly completed by the time of exosporium formation. The crystal formation was clearly associated with the outer forespore membrane from stages III through VI, and the crystals grew from polypeptide-like chains originated from the outer forespore membrane. These observations are different from previous findings, which report no association with the forespore membrane. The crystals were located adjacent to the outer membrane of the spore until the release stage. The axes size of the bipyramidal crystal was approximately $0.25{\mu}m{\times}42{\mu}m$. During crystal biogenesis, the crystal development could be classified into four stages; initiation stage Cl (sporulation stage . III), growth stage C2 (sporulation III to V), envelopment and maturation C3 (sporulation V to V), and finally release stage C4 (sporulation Vll).

  • PDF

Bacterial Outer Membrane Vesicles as a Delivery System for Virulence Regulation

  • Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1343-1347
    • /
    • 2016
  • Outer membrane vesicles (OMVs) are spherical nanostructures that are ubiquitously shed from gram-negative bacteria both in vitro and in vivo. Recent findings revealed that OMVs, which contain diverse components derived from the parent bacterium, play an important role in communication with neighboring bacteria and the environment. Furthermore, nanoscale proteoliposomes decorated with pathogen-associated molecules attract considerable attention as a non-replicative carrier for vaccines and drug materials. This review introduces recent advances in OMV biogenesis and discusses the roles of OMVs in the context of bacterial communication and virulence regulation. It also describes the remarkable accomplishments in OMV engineering for diverse therapeutic applications.

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes

  • Schatzle, Hannah;Brouwer, Eva-Maria;Liebhart, Elisa;Stevanovic, Mara;Schleiff, Enrico
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.645-658
    • /
    • 2021
  • Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.

Microbe-derived extracellular vesicles as a smart drug delivery system

  • Yang, Jinho;Kim, Eun Kyoung;McDowell, Andrea;Kim, Yoon-Keun
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2018
  • The human microbiome is known to play an essential role in influencing host health. Extracellular vesicles (EVs) have also been reported to act on a variety of signaling pathways, distally transport cellular components such as proteins, lipids, and nucleic acid, and have immunomodulatory effects. Here we shall review the current understanding of the intersectionality of the human microbiome and EVs in the emerging field of microbiota-derived EVs and their pharmacological potential. Microbes secrete several classes of EVs: outer membrane vesicles (OMVs), membrane vesicles (MVs), and apoptotic bodies. EV biogenesis is unique to each cell and regulated by sophisticated signaling pathways. EVs are primarily composed of lipids, proteins, nucleic acids, and recent evidence suggests they may also carry metabolites. These components interact with host cells and control various cellular processes by transferring their constituents. The pharmacological potential of microbiome-derived EVs as vaccine candidates, biomarkers, and a smart drug delivery system is a promising area of future research. Therefore, it is necessary to elucidate in detail the mechanisms of microbiome-derived EV action in host health in a multi-disciplinary manner.

Inhibition of mitoNEET induces Pink1-Parkin-mediated mitophagy

  • Lee, Seunghee;Lee, Sangguk;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.354-359
    • /
    • 2022
  • MitoNEET, a mitochondrial outer membrane protein containing the Asn-Glu-Glu-Thr (NEET) sequence, controls the formation of intermitochondrial junctions and confers autophagy resistance. Moreover, mitoNEET as a mitochondrial substrate undergoes ubiquitination by activated Parkin during the initiation of mitophagy. Therefore, mitoNEET is linked to the regulation of autophagy and mitophagy. Mitophagy is the selective removal of the damaged or unnecessary mitochondria, which is crucial to sustaining mitochondrial quality control. In numerous human diseases, the accumulation of damaged mitochondria by impaired mitophagy has been observed. However, the therapeutic strategy targeting of mitoNEET as a mitophagy-enhancing mediator requires further research. Herein, we confirmed that mitophagy is indeed activated by mitoNEET inhibition. CCCP (carbonyl cyanide m-chlorophenyl hydrazone), which leads to mitochondrial depolarization, induces mitochondrial dysfunction and superoxide production. This, in turn, contributes to the induction of mitophagy; mitoNEET protein levels were initially increased before an increase in LC3-II protein following CCCP treatment. Pharmacological inhibition of mitoNEET using mitoNEET Ligand-1 (NL-1) promoted accumulation of Pink1 and Parkin, which are mitophagy-associated proteins, and activation of mitochondria-lysosome crosstalk, in comparison to CCCP alone. Inhibition of mitoNEET using NL-1, or mitoNEET shRNA transfected into RAW264.7 cells, abrogated CCCP-induced ROS and mitochondrial cell death; additionally, it activated the expression of PGC-1α and SOD2, regulators of oxidative metabolism. In particular, the increase in PGC-1α, which is a major regulator of mitochondrial biogenesis, promotes mitochondrial quality control. These results indicated that mitoNEET is a potential therapeutic target in numerous human diseases to enhance mitophagy and protect cells by maintaining a network of healthy mitochondria.