Browse > Article
http://dx.doi.org/10.4014/jmb.2103.03009

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes  

Schatzle, Hannah (Institute for Molecular Biosciences, Goethe University)
Brouwer, Eva-Maria (Institute for Molecular Biosciences, Goethe University)
Liebhart, Elisa (Institute for Molecular Biosciences, Goethe University)
Stevanovic, Mara (Institute for Molecular Biosciences, Goethe University)
Schleiff, Enrico (Institute for Molecular Biosciences, Goethe University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.5, 2021 , pp. 645-658 More about this Journal
Abstract
Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.
Keywords
Cyanobacteria; ${\beta}$-barrel proteins; Omp85 function; outer membrane biogenesis; porins;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hansel A, Tadros MH. 1998. Characterization of two pore-forming proteins isolated from the outer membrane of Synechococcus PCC 6301. Curr. Microbiol. 36: 321-326.   DOI
2 Brechtel E, Bahl H. 1999. In Thermoanaerobacterium thermosulfurigenes EM1 S-layer homology domains do not attach to peptidoglycan. J. Bacteriol. 181: 5017-5023.   DOI
3 Ilk N, Kosma P, Puchberger M, Egelseer EM, Mayer HF, Sleytr UB, et al. 1999. Structural and functional analyses of the secondary cell wall polymer of Bacillus sphaericus CCM 2177 that serves as an S-layer-specific anchor. J. Bacteriol. 181: 7643-7646.   DOI
4 Kern J, Ryan C, Faull K, Schneewind O. 2010. Bacillus anthracis surface-layer proteins assemble by binding to the secondary cell wall polysaccharide in a manner that requires csaB and tagO. J. Mol. Biol. 401: 757-775.   DOI
5 Gandini C, Schmidt SB, Husted S, Schneider A, Leister D. 2017. The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. New Phytol. 215: 256-268.   DOI
6 Schleiff E, Maier UG, Becker T. 2011. Omp85 in eukaryotic systems: One protein family with distinct functions. Biol. Chem. 392: 21-27.   DOI
7 Webb CT, Heinz E, Lithgow T. 2012. Evolution of the β-barrel assembly machinery. Trends Microbiol. 20: 612-620.   DOI
8 Eisenhut M. 2019. Manganese homeostasis in cyanobacteria. Plants (Basel) 9: 18.   DOI
9 Galdiero S, Falanga A, Cantisani M, Tarallo R, Elena Della Pepa M, D'Oriano V, et al. 2013. Microbe-Host Interactions: Structure and Role of Gram-Negative Bacterial Porins. Curr. Protein Pept. Sci. 13: 843-854.   DOI
10 Nikaido H. 1994. Porins and specific diffusion channels in bacterial outer membranes. J. Biol. Chem. 269: 3905-3908.   DOI
11 Paerl HW, Crocker KM, Prufert LE. 1987. Limitation of N2 fixation in coastal marine waters: Relative importance of molybdenum, iron, phosphorus, and organic matter availability. Limnol. Oceanogr. 32: 525-536.   DOI
12 Acland A, Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, et al. 2014. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 42: D7-D17.   DOI
13 Wolk CP, Vonshak A, Kehoe P, Elhai J. 1984. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc. Natl. Acad. Sci. USA 81: 1561-1565.   DOI
14 Struyve M, Moons M, Tommassen J. 1991. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 218: 141-147.   DOI
15 Kowata H, Tochigi S, Takahashi H, Kojima S. 2017. Outer membrane permeability of cyanobacterium Synechocystis sp. strain PCC 6803: Studies of passive diffusion of small organic nutrients reveal the absence of classical porins and intrinsically low permeability. J. Bacteriol. 199: e00371-17.
16 Choi U, Lee CR. 2019. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol. 10: 953.   DOI
17 Conlan S, Zhang Y, Cheley S, Bayley H. 2000. Biochemical and biophysical characterization of OmpG: A monomeric porin. Biochemistry 39: 11845-11854.   DOI
18 Valladares A, Rodriguez V, Camargo S, Martinez-Noel GMA, Herrero A, Luque I. 2011. Specific role of the cyanobacterial pipX factor in the heterocysts of Anabaena sp. strain PCC 7120. J. Bacteriol. 193: 1172-1182.   DOI
19 Barron A, May G, Bremer E, Villarejo M. 1986. Regulation of envelope protein composition during adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 167: 433-438.   DOI
20 Berman-Frank I, Cullen JT, Shaked Y, Sherrell RM, Falkowski PG. 2001. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46: 1249-1260.   DOI
21 Rudolf M, Kranzler C, Lis H, Margulis K, Stevanovic M, Keren N, Schleiff E. 2015. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol. Microbiol. 97: 577-588.   DOI
22 Dekker N, Tommassen J, Lustig A, Rg J, Rosenbusch P, Verheij HM. 1997. Dimerization regulates the enzymatic activity of Escherichia coli outer membrane Phospholipase A. J. Biol. Chem. 272: 3179-3184.   DOI
23 Volokhina EB, Beckers F, Tommassen J, Bos MP. 2009. The β-barrel outer membrane protein assembly complex of Neisseria meningitidis. J. Bacteriol. 191: 7074-7085.   DOI
24 Braun M, Silhavy TJ. 2002. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45: 1289-1302.   DOI
25 Hahn A, Schleiff E. 2014. The Cell Envelope. In The Cell Biology of Cyanobacteria, Flores E, Herrero A, eds. pp. 29-87. Caister Academic Press, U.K., Norfolk.
26 Oliveira P, Martins NM, Santos M, Couto NAS, Wright PC, Tamagnini P. 2015. The Anabaena sp. PCC 7120 exoproteome: Taking a peek outside the box. Life 5: 130-163.   DOI
27 Moslavac S, Bredemeier R, Mirus O, Granvogl B, Eichacker LA, Schleiff E. 2005. Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J. Proteome. Res. 4: 1330-1338.   DOI
28 Moslavac S, Reisinger V, Berg M, Mirus O, Vosyka O, Ploscher M, et al. 2007. The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120. Biol. Chem. 388: 823-829.   DOI
29 Schirmer T, Keller TA, Wang YF, Rosenbusch JP. 1995. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267: 512-516.   DOI
30 Kim KH, Aulakh S, Paetzel M. 2012. The bacterial outer membrane β-barrel assembly machinery. Protein Sci. 21: 751-768.   DOI
31 Hancock REW. 1987. Role of porins in outer membrane permeability. J. Bacteriol. 169: 929-933.   DOI
32 Jap BK, Walian PJ. 1990. Biophysics of the structure and function of porins. Q. Rev. Biophys. 23: 367-403.   DOI
33 Nikaido H. 2003. Molecular basis of bacterial outer membrane prmeability revisited. Microbiol. Mol. Biol. Rev. 67: 593-656.   DOI
34 Nicolaisen K, Mariscal V, Bredemeier R, Pernil R, Moslavac S, Lopez-Igual R, et al. 2009. The outer membrane of a heterocystforming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells. Mol. Microbiol. 74: 58-70.   DOI
35 Hahn A, Stevanovic M, Mirus O, Schleiff E. 2012. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J. Biol. Chem. 287: 41126-41138.   DOI
36 Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W. 1994. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224-1233.   DOI
37 Ekman M, Picossi S, Campbell EL, Meeks JC, Flores E. 2013. A Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis. Plant. Physiol. 161: 1984-1992.   DOI
38 Simm S, Keller M, Selymesi M, Schleiff E. 2015. The composition of the global and feature specific cyanobacterial core-genomes. Front. Microbiol. 6: 219.   DOI
39 Qiu G, Jiang H, Lis H, Li Z, Deng B, Shang J, et al. 2020. A unique porin meditates iron-selective transport through cyanobacterial outer membranes. Environ. Microbiol. 23: 376-390.
40 Hsueh YC, Brouwer EM, Marzi J, Mirus O, Schleiff E. 2015. Functional properties of LptA and LptD in Anabaena sp. PCC 7120. Biol. Chem. 396: 1151-1162.   DOI
41 Kumar K, Mella-Herrera RA, Golden JW. 2010. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2: a000315.   DOI
42 Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: A sequence logo generator. Genome Res. 14: 1188-1190.   DOI
43 Stork M, Bos MP, Jongerius I, de Kok N, Schilders I, Weynants VE, et al. 2010. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog. 6: e1000969.   DOI
44 Barnett JP, Scanlan DJ, Blindauer CA. 2014. Identification of major zinc-binding proteins from a marine cyanobacterium: Insight into metal uptake in oligotrophic environments. Metallomics 6: 1254-1268.   DOI
45 Gonzalez-Sanchez A, Cubillas CA, Miranda F, Davalos A, Garcia-de los Santos A. 2018. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42. Microbiologyopen 7: e00573.   DOI
46 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.   DOI
47 Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47: W636-W641.   DOI
48 Elhai J, Wolk PC. 1988. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68: 119-138.   DOI
49 Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
50 Elhai J, Wolk CP. 1988. Conjugal transfer of DNA to cyanobacteria. Methods Enzymol. 167: 747-754.   DOI
51 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.   DOI
52 Olmedo-Verd E, Muro-Pastor AM, Flores E, Herrero A. 2006. Localized induction of the ntcA regulatory gene in developing heterocysts of Anabaena sp. strain PCC 7120. J. Bacteriol. 188: 6694-6699.   DOI
53 Videau P, Cozy LM. 2019. Anabaena sp. strain PCC 7120: Laboratory Maintenance, Cultivation, and Heterocyst Induction. Curr. Protoc. Microbiol. 52: e71.   DOI
54 Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E. 2012. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ. Microbiol. 14: 1655-1670.   DOI
55 Zeng L, Guo J, Xu HB, Huang R, Shao W, Yang L, et al. 2013. Direct Blue 71 staining as a destaining-free alternative loading control method for Western blotting. Electrophoresis 34: 2234-2239.   DOI
56 Steeghs L, de Cock H, Evers E, Zomer B, Tommassen J, van der Ley P. 2001. Outer membrane composition of a lipopolysaccharide-defcient Neisseria meningitidis mutant. EMBO J. 20: 6937-6945.   DOI
57 Shcolnick S, Shaked Y, Keren N. 2007. A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC6803. Biochim. Biophys. Acta-Bioenerg. 1767: 814-819.   DOI
58 Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 21: 2473-2484.   DOI
59 Smit J, Kamio Y, Nikaido H. 1975. Outer membrane of Salmonella typhimurium: chemical analysis and freeze fracture studies with lipopolysaccharide mutants. J. Bacteriol. 124: 942-958.   DOI
60 Koebnik R, Locher KP, Van Gelder P. 2000. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol. 37: 239-253.   DOI
61 Rudolf M, Stevanovic M, Kranzler C, Pernil R, Keren N, Schleiff E. 2016. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120. Plant. Mol. Biol. 92: 57-69.   DOI
62 Smith SGJ, Mahon V, Lambert MA, Fagan RP. 2007. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol. Lett. 273: 1-11.   DOI
63 Pages J-M, James CE, Winterhalter M. 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6: 893-903.   DOI
64 Gledhill M, Buck KN. 2012. The organic complexation of iron in the marine environment: A review. Front. Microbiol. 3: 69.   DOI
65 Osborn MJ, Gander JE, Parisi E, Carson J. 1972. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane . J. Biol. Chem. 247: 3962-3972.   DOI
66 Nicolaisen K, Hahn A, Valdebenito M, Moslavac S, Samborski A, Maldener I, et al. 2010. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta - Biomembr. 1798: 2131-2140.   DOI
67 Lis H, Kranzler C, Keren N, Shaked Y. 2015. A comparative study of Iron uptake rates and mechanisms amongst marine and fresh water Cyanobacteria: prevalence of reductive Iron uptake. Life 5: 841-860.   DOI
68 Morel FMM, Kustka AB, Shaked Y. 2008. The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol. Oceanogr. 53: 400-404.   DOI
69 Fresenborg LS, Graf J, Schatzle H, Schleiff E. 2020. Iron homeostasis of cyanobacteria: advancements in siderophores and metal transporters. pp. 85-117. In Advances in Cyanobacterial Biology, Elsevier.
70 Napolitano M, Rubio MA, Santamaria-Gomez J, Olmedo-Verd E, Robinson NJ, Luque I. 2012. Characterization of the response to Zinc deficiency in the Cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 194: 2426-2436.   DOI
71 Brouwer EM, Ngo G, Yadav S, Ladig R, Schleiff E. 2019. Tic22 from Anabaena sp. PCC 7120 with holdase function involved in outer membrane protein biogenesis shuttles between plasma membrane and Omp85. Mol. Microbiol. 111: 1302-1316.   DOI
72 Tripp J, Hahn A, Koenig P, Flinner N, Bublak D, Brouwer EM, et al. 2012. Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J. Biol. Chem. 287: 24164-24173.   DOI
73 Sharon S, Salomon E, Kranzler C, Lis H, Lehmann R, Georg J, et al. 2014. The hierarchy of transition metal homeostasis: Iron controls manganese accumulation in a unicellular cyanobacterium. Biochim. Biophys. Acta - Bioenerg. 1837: 1990-1997.   DOI
74 De Cock H, Struyve M, Kleerebezem M, Van Der Krift T, Tommassen J. 1997. Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. J. Mol. Biol. 269: 473-478.   DOI
75 Nicolaisen K, Hahn A, Schleiff E. 2009. The cell wall in heterocyst formation by Anabaena sp. PCC 7120. J. Basic Microbiol. 49: 5-24.   DOI
76 Samsudin F, Ortiz-Suarez ML, Piggot TJ, Bond PJ, Khalid S. 2016. OmpA: A flexible clamp for bacterial cell wall attachment. Structure 24: 2227-2235.   DOI
77 Bosch D, Scholten M, Verhagen C, Tommassen J. 1989. The role of the carboxy-terminal membrane-spanning fragment in the biogenesis of Escherichia coli K12 outer membrane protein PhoE. Mol. Gen. Genet. MGG 216: 144-148.   DOI
78 Paramasivam N, Habeck M, Linke D. 2012. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not? BMC Genomics 13: 510.   DOI
79 Novikova OD, Solovyeva TF. 2009. Nonspecific porins of the outer membrane of Gram-negative bacteria: Structure and functions. Biochem. Suppl. Ser. A: Membr. Cell. Biol. 3: 3-15.
80 Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR, et al. 2014. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl. Acad. Sci. USA 111: 5878-5883.   DOI
81 Liu X, Ferenci T. 1998. Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J. Bacteriol. 180: 3917-3922.   DOI
82 Lutkenhaus JF. 1977. Role of a major outer membrane protein in Escherichia coli. J. Bacteriol. 131: 631-637.   DOI
83 Simmerman RF, Dave AM, Bruce BD. 2014. Structure and Function of POTRA Domains of Omp85/TPS Superfamily. pp. 1-34. In International Review of Cell and Molecular Biology, Elsevier Inc.
84 Wilk L, Strauss M, Rudolf M, Nicolaisen K, Flores E, Kuhlbrandt W, et al. 2011. Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. PCC 7120. Cell. Microbiol. 13: 1744-1754.   DOI
85 Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ. 2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185: 6112-6118.   DOI
86 Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J. 2006. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 4: e377.   DOI
87 Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, Kruger V, et al. 2008. Dissecting Membrane Insertion of Mitochondrial β-Barrel Proteins. Cell 132: 1011-1024.   DOI
88 Haeili M, Speer A, Rowland JL, Niederweis M, Wolschendorf F. 2015. The role of porins in copper acquisition by mycobacteria. Int. J. Mycobacteriol. 4: 91-92.   DOI
89 Hohle TH, Franck WL, Stacey G, O'Brian MR. 2011. Bacterial outer membrane channel for divalent metal ion acquisition. Proc. Natl. Acad. Sci. USA 108: 15390-15395.   DOI
90 Speer A, Rowland JL, Haeili M, Niederweis M, Wolschendorf F. 2013. Porins increase copper susceptibility of Mycobacterium tuberculosis. J. Bacteriol. 195: 5133-5140.   DOI
91 Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, et al. 2015. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat. Commun. 6: 7996.   DOI
92 Jurgens UJ, Drews G, Weckesser J. 1983. Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J. Bacteriol. 154: 471-478.   DOI
93 Genevrois S, Steeghs L, Roholl P, Letesson J-J, van der Ley P. 2003. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22: 1780-1789.   DOI