Browse > Article
http://dx.doi.org/10.4014/jmb.1604.04080

Bacterial Outer Membrane Vesicles as a Delivery System for Virulence Regulation  

Yoon, Hyunjin (Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.8, 2016 , pp. 1343-1347 More about this Journal
Abstract
Outer membrane vesicles (OMVs) are spherical nanostructures that are ubiquitously shed from gram-negative bacteria both in vitro and in vivo. Recent findings revealed that OMVs, which contain diverse components derived from the parent bacterium, play an important role in communication with neighboring bacteria and the environment. Furthermore, nanoscale proteoliposomes decorated with pathogen-associated molecules attract considerable attention as a non-replicative carrier for vaccines and drug materials. This review introduces recent advances in OMV biogenesis and discusses the roles of OMVs in the context of bacterial communication and virulence regulation. It also describes the remarkable accomplishments in OMV engineering for diverse therapeutic applications.
Keywords
Outer membrane vesicle; virulence; pathogen; biogenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Evans AG, Davey HM, Cookson A, Currinn H, Cooke-Fox G, Stanczyk PJ, Whitworth DE. 2012. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158: 2742-2752.   DOI
2 Alaniz RC, Deatherage BL, Lara JC, Cookson BT. 2007. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J. Immunol. 179: 7692-7701.   DOI
3 Bai J, Kim SI, Ryu S, Yoon H. 2014. Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium. Infect. Immun. 82: 4001-4010.   DOI
4 Collins BS. 2011. Gram-negative outer membrane vesicles in vaccine development. Discov. Med. 12: 7-15.
5 Duperthuy M, Sjostrom AE, Sabharwal D, Damghani F, Uhlin BE, Wai SN. 2013. Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog. 9: e1003620.   DOI
6 Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM. 2014. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80: 3469-3483.   DOI
7 Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, et al. 2008. Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect. Immun. 76: 1825-1836.   DOI
8 Imayoshi R, Cho T, Kaminishi H. 2011. NO production in RAW264 cells stimulated with Porphyromonas gingivalis extracellular vesicles. Oral Dis. 17: 83-89.   DOI
9 Jose J, Meyer TF. 2007. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol. Mol. Biol. Rev. 71: 600-619.   DOI
10 Mashburn-Warren LM, Whiteley M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61: 839-846.
11 Kesty NC, Kuehn MJ. 2004. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J. Biol. Chem. 279: 2069-2076.   DOI
12 Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. 2004. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23: 4538-4549.   DOI
13 Kim JY, Doody AM, Chen DJ, Cremona GH, Shuler ML, Putnam D, DeLisa MP. 2008. Engineered bacterial outer membrane vesicles with enhanced functionality. J. Mol. Biol. 380: 51-66.   DOI
14 Prados-Rosales R, Weinrick BC, Pique DG, Jacobs WR Jr, Casadevall A, Rodriguez GM. 2014. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J. Bacteriol. 196: 1250-1256.   DOI
15 Schertzer JW, Whiteley M. 2012. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3.   DOI
16 Rakoff-Nahoum S, Coyne MJ, Comstock LE. 2014. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24: 40-49.   DOI
17 Schaar V, Nordstrom T, Morgelin M, Riesbeck K. 2011. Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 55: 3845-3853.   DOI
18 Schaar V, Uddback I, Nordstrom T, Riesbeck K. 2014. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing beta-lactamase derived from Haemophilus influenzae. J. Antimicrob. Chemother. 69: 117-120.   DOI
19 Schwechheimer C, Sullivan CJ, Kuehn MJ. 2013. Envelope control of outer membrane vesicle production in gram-negative bacteria. Biochemistry 52: 3031-3040.   DOI
20 Schroeder J, Aebischer T. 2009. Recombinant outer membrane vesicles to augment antigen-specific live vaccine responses. Vaccine 27: 6748-6754.   DOI
21 Schwechheimer C, Kulp A, Kuehn MJ. 2014. Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol. 14: 324.   DOI
22 Schwechheimer C, Rodriguez DL, Kuehn MJ. 2015. NlpImediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli. Microbiologyopen 4: 375-389.   DOI
23 Sharpe SW, Kuehn MJ, Mason KM. 2011. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect. Immun. 79: 4361-4369.   DOI
24 Vidakovics ML, Jendholm J, Morgelin M, Mansson A, Larsson C, Cardell LO, Riesbeck K. 2010. B cell activation by outer membrane vesicles - a novel virulence mechanism. PLoS Pathog. 6: e1000724.   DOI
25 Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. 2012. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12: 509-520.   DOI
26 Soderblom T, Oxhamre C, Wai SN, Uhlen P, Aperia A, Uhlin BE, Richter-Dahlfors A. 2005. Effects of the Escherichia coli toxin cytolysin A on mucosal immunostimulation via epithelial Ca2+ signalling and Toll-like receptor 4. Cell Microbiol. 7: 779-788.   DOI
27 Stentz R, Horn N, Cross K, Salt L, Brearley C, Livermore DM, Carding SR. 2015. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against beta-lactam antibiotics. J. Antimicrob. Chemother. 70: 701-709.   DOI
28 Tran AX, Karbarz MJ, Wang X, Raetz CR, McGrath SC, Cotter RJ, Trent MS. 2004. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J. Biol. Chem. 279: 55780-55791.   DOI
29 van der Ley P, Steeghs L, Hamstra HJ, ten Hove J, Zomer B, van Alphen L. 2001. Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect. Immun. 69: 5981-5990.   DOI
30 Velimirov B, Hagemann S. 2011. Mobilizable bacterial DNA packaged into membrane vesicles induces serial transduction. Mob. Genet. Elements 1: 80-81.   DOI
31 Winter J, Letley D, Rhead J, Atherton J, Robinson K. 2014. Helicobacter pylori membrane vesicles stimulate innate pro- and anti-inflammatory responses and induce apoptosis in Jurkat T cells. Infect. Immun. 82: 1372-1381.   DOI
32 Yaron S, Kolling GL, Simon L, Matthews KR. 2000. Vesiclemediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66: 4414-4420.   DOI
33 Yoon H, Ansong C, Adkins JN, Heffron F. 2011. Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages. Infect. Immun. 79: 2182-2192.   DOI
34 Zhao K, Deng X, He C, Yue B, Wu M. 2013. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the Toll-like receptor 4 signaling pathway. Infect. Immun. 81: 4509-4518.   DOI