• 제목/요약/키워드: out-of-plane stress

검색결과 329건 처리시간 0.031초

인장 굽힘피로를 받는 부재의 피로수명과 균열관통 (Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress)

  • 남기우
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF

Crack Problem at Interface of Piezoelectric Strip Bonded to Elastic Layer Under Anti-Plane Shear

  • Lee, Kang-Yong;Kwon, Jong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.61-65
    • /
    • 2001
  • Using the theory of linear piezoelectricity, the problem of two layered strip with a piezoelectric ceramic bonded to an elastic material containing a finite interface crack is considered. The out-of-plane mechanical and in-plane electrical loadings are simultaneously applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The stress intensity factor is determined, and numerical analyses for several materials are performed and discussed.

  • PDF

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

플레이트거더 용접구조상세의 피로거동에 관한 연구 (A Study on the Fatigue Behavior of the Welded Structural Details in Plate Girder)

  • 이명구;이승용
    • 한국안전학회지
    • /
    • 제23권2호
    • /
    • pp.14-20
    • /
    • 2008
  • The objective of this study is to examine fatigue strength of the welded details. In order to attain the goal of this study, the bending fatigue tests was performed for four kinds of welded details used in steel bridges, such as in-plane gusset, out-of-plane gusset, cruciform, and cover plate. The effect of the length of welded attachment on fatigue strength was greater in out-of-plane gusset than in in-plane gusset. The fatigue strength of welded details with short attachment was superior to that with long attachment. Fatigue strength of welded details with transversely loaded welds was lower than that with longitudinally loaded welds, and those results were not satisfied with AASHTO specifications. For the fatigue strength of cover plate, cover plate with rectangular section was superior to that with tapered section. It was found that the fatigue crack initiates at the points of stress concentration which are the boundary between the base metal and the bead of weld in the part of the longitudinal edge of attachment, and propagates first along the boundary and along the perpendicular to the direction of the principle stress in the base metal of welded tip.

OPB/IPB를 고려한 계류체인의 비선형 수치해석 (Nonlinear Finite Element Analysis for Mooring Chain Considering OPB/IPB)

  • 김민석;김유일
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.299-307
    • /
    • 2017
  • The design of the mooring line to maintain the position of an offshore structure in rough marine environments is recognized as a very important consideration. Conventional fatigue evaluation of a mooring line was performed by considering the tensile force acting on the mooring line, but the mooring line broke after 238 days in the girassol area even though the expected fatigue life was expected to be longer. The causes of this event are known to be due to OPB/IPB (out-of-plane bending/in-plane bending) caused by chain link friction due to the excessive tensile strength of the mooring line. In this study, three models with different boundary conditions were proposed for fatigue analysis of a mooring line considering OPB/IPB. Interlink stiffness was calculated by nonlinear structure analysis and a stress concentration factor was derived. In addition, the sensitivity of interlink stiffness according to the magnitude of tensile force, large deformation effect, and coefficient of friction was analyzed, and the effect of critical elastic slip and bending moment calculation position on interlink stiffness was confirmed.

실동이력에 기초한 곡선거더교의 피로균열 특성 및 분석 (Characteristic and Analysis of Fatigue Crack for Curved Girder Bridge based on the Stress Range Histerisis)

  • 권순철;경갑수;김대용;이해성
    • 대한토목학회논문집
    • /
    • 제28권1A호
    • /
    • pp.1-13
    • /
    • 2008
  • 곡선거더교의 복부는 교축방향의 면내응력과 면외 휨응력을 동시에 받는 구조이므로, 직선교에 비하여 플랜지와 복부의 필릿용접이음부에서의 발생응력이 상당히 크며, 또 바닥틀이나 브레이싱을 주거더에 연결시켜주는 거셋플레이트는 구조적으로 더욱 취약한 구조가 된다. 본 연구에서는 23년간 공용된 곡선거더교에서 발생된 피로균열의 발생원인을 조사하기 위하여 실제교통 흐름 하에서의 용접부에서의 응력특성을 파악하기 위하여 일련의 현장측정을 실시하였다. 이들 현장측정으로부터 여러 가지 타입에 대한 피로균열 원인을 분석하였고, 또한 주요 균열에 대한 피로수명을 평가하였다. 또한 곡선거더교 용접이음부의 구조거동 특성을 조사하기 위하여 유한요소해석을 실시하고 이들 결과를 현장측정결과와 비교분석하였다.

용접 잔류응력 해석을 위한 Heat Input Model 개발 (Modeling of Welding Heat Input for Residual Stress Analysis)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • 제11권3호
    • /
    • pp.34-47
    • /
    • 1993
  • 용접에서 발생하는 열응력 및 잔류응력을 해석하기 위한 유한요소용 모델을 개발하였다. 여러 가 지 변수의 연구를 통하여 Ramp heat input function과 Lumped모델을 제시하였다. 용접부에 열입 력을 점차적으로 주기 위하여 Ramp heat input을 이용하였으며 Ramp input을 통하여 이차원 모 델에서의 이동열원의 영향을 고려하였고 실험치와 비교에서 최적 ramp시간을 결정하였다. 다층용 접에서는 용접 pass 에 비례하여 계산시간이 증가한다. 따라서 후판용접의 잔류응력계산에는 막 대한 계산시간이 필요하며 이를 줄이기 위하여 Lumped 모델을 개발하였다. 이 Lumped모델에서 는 각 용접층에 들어있는 용접 pass들을 하나의 lumped pass으로 이용하였으며 각 pass를 따로 계산한 모델 및 시험치와의 비교를 통하여 최적 lumped technique을 제시하였다. *****Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

Influence of polled direction on the stress distribution in piezoelectric materials

  • Ilhan, Nihat;Koc, Nagihan
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.955-971
    • /
    • 2015
  • In this paper, the influence of the polled direction of piezoelectric materials on the stress distribution is studied under time-harmonic dynamical load (time-harmonic Lamb's problem). The system considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain state is considered. It is assumed that the perfect contact conditions between the covering layer and half-plane are satisfied. The boundary value problems under consideration are solved by employing Fourier exponential transformation techniques with respect to coordinates directed along the interface line. Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the interface plane are presented and discussed. As a result of the analyses, it is established that the polled directions of the piezoelectric materials play an important role on the values of the studied stresses and electric potential.

A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures

  • Wang, Dongdong;Fang, Lingming
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.213-234
    • /
    • 2010
  • A multiscale method is presented for analysis of thin slab structures in which the microstructures can not be reduced to two-dimensional plane stress models and thus three dimensional treatment of microstructures is necessary. This method is based on the classical asymptotic expansion multiscale approach but with consideration of the special geometric characteristics of the slab structures. This is achieved via a special form of multiscale asymptotic expansion of displacement field. The expanded three dimensional displacement field only exhibits in-plane periodicity and the thickness dimension is in the global scale. Consequently by employing the multiscale asymptotic expansion approach the global macroscopic structural problem and the local microscopic unit cell problem are rationally set up. It is noted that the unit cell is subjected to the in-plane periodic boundary conditions as well as the traction free conditions on the out of plane surfaces of the unit cell. The variational formulation and finite element implementation of the unit cell problem are discussed in details. Thereafter the in-plane material response is systematically characterized via homogenization analysis of the proposed special unit cell problem for different microstructures and the reasoning of the present method is justified. Moreover the present multiscale analysis procedure is illustrated through a plane stress beam example.